Combinatorial immune and stress response, cytoskeleton and signal transduction effects of graphene and triphenyl phosphate (TPP) in mussel Mytilus galloprovincialis.

J Hazard Mater

CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences(CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, PR China. Electronic address:

Published: October 2019

Owing to its unique surface properties, graphene can absorb environmental pollutants, thereby affecting their environmental behavior. Triphenyl phosphate (TPP) is a highly produced flame retardant. However, the toxicities of graphene and its combinations with contaminants remain largely unexplored. In this work, we investigated the toxicological effects of graphene and TPP to mussel Mytilus galloprovincialis. Results indicated that graphene could damage the digestive gland tissues, but no significant changes were found in the graphene + TPP co-exposure group. There was a significant decrease in the content of GSH and the activities of GST and CAT in the co-exposure group compared to that in graphene-exposed group. It seemed that the adsorption of TPP on graphene could inhibit the surface activity of graphene and thus reduced its tissue damage and oxidative stress in mussels. Expression levels of stress response (MyD88a), cytoskeleton (MHC1, PMyo and TMyo) and reproductive (CP450 and HSD) genes were up-regulated in the graphene-exposed group, but significantly down-regulated after combined exposure of graphene and TPP. Furthermore, PPI analysis proved that the interactions of HSP90AA1 with UNC45B and FKBP4/5/6/L contributed to the toxicity caused by the combined exposure. Because of the potential toxicity of graphene and TPP, government administrators should consider its risks prior to the widespread environmental exposure.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2019.120778DOI Listing

Publication Analysis

Top Keywords

graphene tpp
12
graphene
9
stress response
8
effects graphene
8
triphenyl phosphate
8
phosphate tpp
8
tpp mussel
8
mussel mytilus
8
mytilus galloprovincialis
8
co-exposure group
8

Similar Publications

The positive electrodes of non-aqueous aluminum ion batteries (AIBs) frequently encounter significant issues, for instance, low capacity in graphite (mechanism: anion de/intercalation and large electrode deformation induced) and poor stability in inorganic positive electrodes (mechanism: multi-electron redox reaction and dissolution of active materials induced). Here, metallo-porphyrin compounds (employed Fe, Co, Ni, Cu, and Zn as the ion centers) are introduced to effectively enhance both the cycling stability and reversible capacity due to the formation of stable conjugated metal-organic coordination and presence of axially coordinated active sites, respectively. With the regulation of electronic energy levels, the d-orbitals in the redox reactions and electron transfer pathways can be rearranged.

View Article and Find Full Text PDF
Article Synopsis
  • Cancer treatments often cause harmful side effects, making the analysis of anticancer drugs like doxorubicin essential for patient safety.
  • Electrochemical sensors, especially those using manganese tetraphenylporphyrin decorated reduced graphene oxide (Mn-TPP/RGO), have gained attention for their affordability, simplicity, and high sensitivity in detecting doxorubicin.
  • The Mn-TPP/RGO modified electrodes demonstrated excellent performance characteristics, including a low detection limit and significant stability, while successfully analyzing doxorubicin in human serum samples.
View Article and Find Full Text PDF

This current study assessed the impacts of morphology adjustment of perovskite BiFeO (BFO) on the construction and photocatalytic activity of P-infused g-CN/U-BiFeO (U-BFO/PCN) heterostructured composite photocatalysts. Favorable formation of U-BFO/PCN composites was attained via urea-aided morphology-controlled hydrothermal synthesis of BFO followed by solvosonication-mediated fusion with already synthesized P-g-CN to form U-BFO/PCN composites. The prepared bare and composite photocatalysts' morphological, textural, structural, optical, and photocatalytic performance were meticulously examined through various analytical characterization techniques and photodegradation of aqueous rhodamine B (RhB).

View Article and Find Full Text PDF

The development of polymeric fabrics with photoinduced antibacterial activity is important for different emerging applications, ranging from materials for medical and clinical practices to disinfection of objects for public use. In this work we prepared a series of cellulose acetate membranes, by means of phase inversion technique, introducing different additives in the starting polymeric solution. The loading of 5,10,15,20-tetraphenylporphyrin (TPP), a known photosensitizer, was considered to impart antibacterial photodynamic properties to the produced membranes.

View Article and Find Full Text PDF

Coaxial Electrospun Tai Chi-Inspired Lithium-Ion Battery Separator with High Performance and Fireproofing Capacity.

ACS Appl Mater Interfaces

September 2023

Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen 361102, China.

Organic flame-retardant-loaded battery separator offers a new opportunity for battery safety. However, its poor thermal stability still poses serious safety issues. Inspired by Tai Chi, an "internal-cultivating and external-practicing" core-shell nanofibrous membrane was prepared by coaxial electrospinning, wherein the shell layer was a mixture of polyvinylidene fluoride, silicon dioxide (SiO), and graphene oxide (GO) and the core layer contained triphenyl phosphate (TPP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!