Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We examined mercury (Hg) accumulation in juvenile and adult subpopulations of Antarctic krill (Euphausia superba) collected west of the Antarctic Peninsula. Samples were collected along a northern cross-shelf transect beginning near Anvers Island and farther south near the sea ice edge in the austral summers of 2011, 2013, 2014, and 2015. Regardless of geographical position, mean concentrations of total Hg and methylmercury (MeHg), the form of Hg that biomagnifies in marine food webs, were significantly higher in juvenile than adult krill in all years. In 2013, juvenile Antarctic krill collected along the coast near Anvers Island had significantly higher MeHg concentrations than krill collected farther offshore, and in 2013 and 2014, coastal juvenile krill exhibited some of the highest MeHg concentrations of all subpopulations sampled. Across all sampling years, collection in northern (sea ice-free) or southern (sea ice edge) transects did not affect MeHg concentrations of juvenile or adult krill, suggesting similar levels and routes of MeHg exposure across the latitudes sampled. Developmental stage, feeding near the coast, and annual variations in sea ice-driven primary and export production were identified as potentially important factors leading to greater MeHg accumulation in juvenile than adult krill. Krill-dependent predators feeding primarily on juveniles may thus accumulate more MeHg than consumers foraging on older krill. These results report MeHg concentrations in Antarctic krill and will be useful for predicting Hg biomagnification in higher-level consumers in this productive Antarctic ecosystem.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.06.176 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!