Natural ACE inhibitory peptides discovery from Spirulina (Arthrospira platensis) strain C1.

Peptides

Biotechnology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Thailand; Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Thailand. Electronic address:

Published: August 2019

Bioactive peptides from natural sources are utilized as food supplements for disease prevention and are increasingly becoming targets for drug discovery due to their specificity, efficacy and the absence of undesirable side effects, among others. Hence, the 'SpirPep' platform was developed to facilitate the in silico-based bioactive peptide discovery of these highly sought-after biomolecules from Spirulina(Arthrospira platensis) and to select the protease (thermolysin) used for in vitro digestion. Analysis of the predicted and experimentally-derived peptides suggested that they were mainly involved in ACE inhibition; thus, an ACEi assay was used to study the ACE inhibitory activity of five candidate peptides (SpirPep1-5), chosen from common peptides with multifunctional bioactivity and 100% bioactive peptide coverage, originating from phycobiliproteins. Results showed that SpirPep1 inhibited the activity of ACE with IC of 1.748 mM and was non-toxic to fibroblasts of African green monkey kidney and human dermal skin. The molecular docking and MD simulation analysis revealed SpirPep1 had significantly lower binding scores than others and showed greater specificity to ACE. The non-bonded interaction energy of SpirPep1 and ACE was -883 kJ/mol. The SpirPep1 indirectly bound to ACE via the ACE substrate binding sites residues (D121, E123, S516, and S517) found in natural ACE inhibitory peptides (angiotensin II and bradykinin potentiating peptides). In addition, two unreported substrate binding sites including R124 and S219 were found. These results indicate that 'SpirPep' platform could increase the success rate for natural bioactive peptide discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.peptides.2019.170107DOI Listing

Publication Analysis

Top Keywords

ace inhibitory
12
bioactive peptide
12
natural ace
8
inhibitory peptides
8
'spirpep' platform
8
peptide discovery
8
ace
8
substrate binding
8
binding sites
8
peptides
7

Similar Publications

Deepstack-ACE: A deep stacking-based ensemble learning framework for the accelerated discovery of ACE inhibitory peptides.

Methods

December 2024

Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok 10700, Thailand. Electronic address:

Identifying angiotensin-I-converting enzyme (ACE) inhibitory peptides accurately is crucial for understanding the primary factor that regulates the renin-angiotensin system and for providing guidance in developing new potential drugs. Given the inherent experimental complexities, using computational methods for in silico peptide identification could be indispensable for facilitating the high-throughput characterization of ACE inhibitory peptides. In this paper, we propose a novel deep stacking-based ensemble learning framework, termed Deepstack-ACE, to precisely identify ACE inhibitory peptides.

View Article and Find Full Text PDF

Soybean peptide (SP) exhibits significant angiotensin-I-converting enzyme inhibitory (ACEI) activity, however, its strong bitterness restricts its use in food industry. This study aimed to reduce the bitterness of SP by natural deep eutectic solvent (NADES)-driven Maillard reaction (MR). Results showed that both the mixtures of Glucose-NADES and the Glucose-Xylose-NADES formed the hydrogen bonds and shown good thermal stability analyzed by using Fourier transform infrared (FTIR), Differential scanning calorimetry (DSC) and Thermogravimetric analysis (TGA).

View Article and Find Full Text PDF

Angiotensin-I-converting enzyme inhibitory peptides from eel () bone collagen: preparation, identification, molecular docking, and protective function on HUVECs.

Front Nutr

December 2024

Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, National R&D Center for Aquatic Product Processing, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China.

Introduction: Hypertension is a chronic cardiovascular disease, which can trigger some disease such as heart failure, loss of vision or kidney. There were various peptides derived from food that are recognized for their ability to inhibit ACE activity, potentially leading to a reduction in blood pressure levels . The primary objective of this research is to discover ACE inhibitory peptides from protein hydrolysates of eel bone collagen (EBCHs).

View Article and Find Full Text PDF

The study assessed the peptide production by using potent Lactiplantibacillus plantarum KGL3A (MG722814) culture to ferment the sheep milk for evaluation of α-glucosidase inhibition, ACE inhibition, α-amylase inhibition, & inhibiting lipase activities. The maximal ACE inhibitory, α-amylase, α-glucosidase, & lipase inhibiting actions were 71.69 %, 71.

View Article and Find Full Text PDF

Investigation of the Interaction Between Angiotensin-Converting Enzyme (ACE) and ACE-Inhibitory Tripeptide from Casein.

Int J Mol Sci

December 2024

Guangxi Key Laboratory for Polysaccharide Materials and Modifications, Guangxi Higher Education Institutes Key Laboratory for New Chemical and Biological Transformation Process Technology, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.

Angiotensin-converting enzyme (ACE) inhibitory peptides exhibit antihypertensive effects by inhibiting ACE activity, and the study of the interaction between ACEs and inhibitory peptides is important for exploring new therapeutic strategies. In this study, the ACE-inhibitory peptide isolated from casein hydrolysate with the amino acid sequence Leu-Leu-Tyr (LLY) exhibited high ACE-inhibitory activity and stability, which holds significant implications for biochemistry and pharmaceutical applications. Furthermore, systematic investigations were conducted on the interaction between ACE and LLY through various approaches.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!