Beyond consensus: Embracing heterogeneity in curated neuroimaging meta-analysis.

Neuroimage

Department of Electrical and Computer Engineering, Clinical Imaging Research Centre, N.1 Institute for Health and Memory Networks Program, National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Centre for Cognitive Neuroscience, Duke-NUS Medical School, Singapore; NUS Graduate School for Integrated Sciences and Engineering, National University of Singapore, Singapore. Electronic address:

Published: October 2019

Coordinate-based meta-analysis can provide important insights into mind-brain relationships. A popular approach for curated small-scale meta-analysis is activation likelihood estimation (ALE), which identifies brain regions consistently activated across a selected set of experiments, such as within a functional domain or mental disorder. ALE can also be utilized in meta-analytic co-activation modeling (MACM) to identify brain regions consistently co-activated with a seed region. Therefore, ALE aims to find consensus across experiments, treating heterogeneity across experiments as noise. However, heterogeneity within an ALE analysis of a functional domain might indicate the presence of functional sub-domains. Similarly, heterogeneity within a MACM analysis might indicate the involvement of a seed region in multiple co-activation patterns that are dependent on task contexts. Here, we demonstrate the use of the author-topic model to automatically determine if heterogeneities within ALE-type meta-analyses can be robustly explained by a small number of latent patterns. In the first application, the author-topic modeling of experiments involving self-generated thought (N = 179) revealed cognitive components fractionating the default network. In the second application, the author-topic model revealed that the left inferior frontal junction (IFJ) participated in multiple task-dependent co-activation patterns (N = 323). Furthermore, the author-topic model estimates compared favorably with spatial independent component analysis in both simulation and real data. Overall, the results suggest that the author-topic model is a flexible tool for exploring heterogeneity in ALE-type meta-analyses that might arise from functional sub-domains, mental disorder subtypes or task-dependent co-activation patterns. Code for this study is publicly available (https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/meta-analysis/Ngo2019_AuthorTopic).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6703957PMC
http://dx.doi.org/10.1016/j.neuroimage.2019.06.037DOI Listing

Publication Analysis

Top Keywords

author-topic model
16
co-activation patterns
12
brain regions
8
regions consistently
8
functional domain
8
mental disorder
8
seed region
8
functional sub-domains
8
ale-type meta-analyses
8
application author-topic
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!