Chronic hepatitis B (CHB) is associated with the development of hepatocellular carcinoma (HCC). Decoy receptor 3 (DcR3) is a tumor necrosis factor receptor that promotes tumor cell survival by inhibiting apoptosis and interfering with immune surveillance. Previous studies showed that DcR3 was overexpressed in HCC cells and that short hairpin RNA (shDcR3) sensitizes TRAIL-resistant HCC cells. However, the expression of DcR3 during hepatitis B virus (HBV) infection has not been investigated. Here, we demonstrated that DcR3 was overexpressed in CHB patients and that DcR3 upregulation was positively correlated with the HBV DNA load and liver injury (determined by histological activity index, serum alanine aminotransferase level, and aspartate aminotransferase level). We found that hepatitis B virus X protein (HBx) upregulated DcR3 expression in a dose-dependent manner, but this increase was blocked by NF-κB inhibitors. HBx also induced the activation of NF-κB, and the NF-κB subunits p65 and p50 upregulated DcR3 by directly binding to the DcR3 promoters. Inhibition of PI3K significantly downregulated DcR3 and inhibited the binding of NF-κB to the DcR3 promoters. Our results demonstrate that the HBx induced DcR3 expression via the PI3K/NF-κB pathway; this process may contribute to the development of HBV-mediated HCC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cellsig.2019.109346 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!