The involvement of GM-CSF deficiencies in parallel pathways of pulmonary alveolar proteinosis and the alcoholic lung.

Alcohol

Center for Translational Medicine and Jane and Leonard Korman Lung Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA. Electronic address:

Published: November 2019

Chronic alcohol consumption renders the lung more susceptible to infections by disrupting essential alveolar macrophage functions. Emerging evidence suggests that these functional deficits are due, in part, to a suppression of GM-CSF signaling, which is believed to compromise monocyte growth and maturation in the lung. However, in addition to controlling monocyte behaviors, GM-CSF also regulates surfactant homeostasis. For example, mice with targeted deletion of the gene for GM-CSF accumulate large amounts of surfactant phospholipids in their lungs. Moreover, decreased GM-CSF signaling in humans has been linked to the development of pulmonary alveolar proteinosis (PAP), a rare disorder in which surfactant lipids and proteins accumulate in alveolar macrophages and the lung exhibits enhanced susceptibility to infection. Consistent with parallel mechanisms in the PAP and alcoholic lung, we have recently reported that levels of intrapulmonary lipids, specifically triglycerides and free fatty acids, are increased in BAL fluid, whole lung digests and alveolar macrophages of chronically alcohol exposed rats. Additionally, we showed that uptake of saturated fatty acids alone could induce phenotypic and functional changes in alveolar macrophages that mimicked those in the alcohol-exposed rat and human lung. Herein, we discuss the role of GM-CSF in surfactant homeostasis and highlight the evidence that links decreased GM-CSF signaling to alveolar macrophage dysfunction in both the PAP and alcohol-exposed lung. Moreover, we discuss how lipid accumulation itself might contribute to altering alveolar macrophage function and propose how targeting these mechanisms could be employed for reducing the susceptibility to pulmonary infections in alcoholics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6592783PMC
http://dx.doi.org/10.1016/j.alcohol.2018.07.006DOI Listing

Publication Analysis

Top Keywords

alveolar macrophage
12
gm-csf signaling
12
alveolar macrophages
12
alveolar
8
pulmonary alveolar
8
alveolar proteinosis
8
lung
8
alcoholic lung
8
surfactant homeostasis
8
decreased gm-csf
8

Similar Publications

Influenza virus infects millions each year, contributing greatly to human morbidity and mortality. Upon viral infection, pathogen-associated molecular patterns activate pattern recognition receptors on host cells, triggering an immune response. The CD209 protein family, homologs of DC-SIGN (dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin), is thought to modulate immune responses to viruses.

View Article and Find Full Text PDF

The use of genetically diverse mouse models offers a more accurate reflection of human genetic variability, improving the translatability of findings to heterogeneous human populations. This approach is particularly valuable in understanding diverse immune responses to disease by environmental exposures. This study investigates the inflammatory responses to acute exposures to mainstream cigarette smoke (CS) and environmental tobacco smoke (ETS) in two genetically diverse mouse strains, CC002/UncJ (UNC) & Diversity Outbred (J:DO).

View Article and Find Full Text PDF

Matrix metalloproteinase 7 (MMP7) as a molecular target for Mycoplasma gallisepticum (MG) resistance in chickens.

Int J Biol Macromol

January 2025

Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education; College of Animal Science and Technology and College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China. Electronic address:

Mycoplasma gallisepticum (MG) causes chronic respiratory disease (CRD), posing a significant threat to global poultry production. Current preventive strategies face limitations, emphasizing the need for alternative approaches such as breeding for disease resistance. This study identifies the matrix metalloproteinase 7 (MMP7) gene as a key factor in CRD resistance.

View Article and Find Full Text PDF

Sepsis-induced acute lung injury (ALI) remains a leading cause of mortality in critically ill patients. Macrophages, key modulators of immune responses, play a dual role in both promoting and resolving inflammation. Exosomes, small extracellular vesicles released by various cells, carry bioactive molecules that influence macrophage polarization and immune responses.

View Article and Find Full Text PDF

Histopathology of incidental non-neoplastic findings in transgenic CByB6F1-Tg(HRAS)2Jic mice used in toxicity studies.

J Toxicol Pathol

January 2025

Labcorp Early Development Laboratories, Inc., 3635 Concorde Parkway, Suite 100, Chantilly, VA, 20151, USA.

This technical report presents a collection of illustrative images and concise descriptions of non-neoplastic microscopic findings noted in transgenic CByB6F1-Tg(HRAS)2Jic (Tg.rasH2) mice from 26-week-carcinogenicity studies. A unique finding in the Tg.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!