This study assessed the influence of rpoS, dps and ompR genes on the tolerance response of Salmonella Enteritidis 86 (SE86) to homologous and heterologous stressing agents after exposure to essential oils (EOs) from Origanum vulgare L. (oregano; OVEO) and Rosmarinus officinalis L. (rosemary; ROEO) and their major constituents (ICs), carvacrol (CAR) and 1,8-cineole (CIN), respectively, by modelling the log reduction over time. Minimum inhibitory concentration values of OVEO (1.25 μL/mL), CAR (0.62 μL/mL), ROEO (20 μL/mL) and CIN (10 μL/mL) against SE86 were always one-fold higher than those against ∆dps, ∆rpoS and ∆ompR mutants. Exposure to the same concentration of OVEO, CAR, ROEO or CIN caused higher reductions (up to 2.5 log CFU/mL) in ∆dps, ∆rpoS and ∆ompR mutants than in SE86 in chicken broth. In assays with homologous stressing agents, ompR, dps and rpoS influenced the tolerance to OEs or ICs. After adaptation to OVEO, CAR, ROEO and CIN, osmotolerance and acid tolerance of SE86 were influenced by rpoS gene, while thermotolerance of SE86 was influenced by ompR. Tolerance of SE86 to sodium hypochlorite after adaptation to OEs or ICs was influenced by rpoS and dps. These findings quantitatively describe for the first time the influence of rpoS, dps and ompR genes on the tolerance of Salmonella Enteritidis to OVEO, CAR, ROEO and CIN.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodres.2019.01.046 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!