Background: To determine if mammographic features from deep learning networks can be applied in breast cancer to identify groups at interval invasive cancer risk due to masking beyond using traditional breast density measures.

Methods: Full-field digital screening mammograms acquired in our clinics between 2006 and 2015 were reviewed. Transfer learning of a deep learning network with weights initialized from ImageNet was performed to classify mammograms that were followed by an invasive interval or screen-detected cancer within 12 months of the mammogram. Hyperparameter optimization was performed and the network was visualized through saliency maps. Prediction loss and accuracy were calculated using this deep learning network. Receiver operating characteristic (ROC) curves and area under the curve (AUC) values were generated with the outcome of interval cancer using the deep learning network and compared to predictions from conditional logistic regression with errors quantified through contingency tables.

Results: Pre-cancer mammograms of 182 interval and 173 screen-detected cancers were split into training/test cases at an 80/20 ratio. Using Breast Imaging-Reporting and Data System (BI-RADS) density alone, the ability to correctly classify interval cancers was moderate (AUC = 0.65). The optimized deep learning model achieved an AUC of 0.82. Contingency table analysis showed the network was correctly classifying 75.2% of the mammograms and that incorrect classifications were slightly more common for the interval cancer mammograms. Saliency maps of each cancer case found that local information could highly drive classification of cases more than global image information.

Conclusions: Pre-cancerous mammograms contain imaging information beyond breast density that can be identified with deep learning networks to predict the probability of breast cancer detection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6589178PMC
http://dx.doi.org/10.1186/s40644-019-0227-3DOI Listing

Publication Analysis

Top Keywords

deep learning
28
learning networks
12
learning network
12
interval screen-detected
8
screen-detected cancers
8
breast cancer
8
breast density
8
saliency maps
8
interval cancer
8
deep
7

Similar Publications

Learning the language of antibody hypervariability.

Proc Natl Acad Sci U S A

January 2025

Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139.

Protein language models (PLMs) have demonstrated impressive success in modeling proteins. However, general-purpose "foundational" PLMs have limited performance in modeling antibodies due to the latter's hypervariable regions, which do not conform to the evolutionary conservation principles that such models rely on. In this study, we propose a transfer learning framework called Antibody Mutagenesis-Augmented Processing (AbMAP), which fine-tunes foundational models for antibody-sequence inputs by supervising on antibody structure and binding specificity examples.

View Article and Find Full Text PDF

Dissolution of CO in water followed by the subsequent hydrolysis reactions is of great importance to the global carbon cycle, and carbon capture and storage. Despite numerous previous studies, the reactions are still not fully understood at the atomistic scale. Here, we combined ab initio molecular dynamics (AIMD) simulations with Markov state models to elucidate the reaction mechanisms and kinetics of CO in supercritical water both in the bulk and nanoconfined states.

View Article and Find Full Text PDF

Background: Large language models (LLMs) have been proposed as valuable tools in medical education and practice. The Chinese National Nursing Licensing Examination (CNNLE) presents unique challenges for LLMs due to its requirement for both deep domain-specific nursing knowledge and the ability to make complex clinical decisions, which differentiates it from more general medical examinations. However, their potential application in the CNNLE remains unexplored.

View Article and Find Full Text PDF

The role of chromatin state in intron retention: A case study in leveraging large scale deep learning models.

PLoS Comput Biol

January 2025

Department of Computer Science, Colorado State University, Fort Collins, Colorado, United States of America.

Complex deep learning models trained on very large datasets have become key enabling tools for current research in natural language processing and computer vision. By providing pre-trained models that can be fine-tuned for specific applications, they enable researchers to create accurate models with minimal effort and computational resources. Large scale genomics deep learning models come in two flavors: the first are large language models of DNA sequences trained in a self-supervised fashion, similar to the corresponding natural language models; the second are supervised learning models that leverage large scale genomics datasets from ENCODE and other sources.

View Article and Find Full Text PDF

As the global economy expands, waterway transportation has become increasingly crucial to the logistics sector. This growth presents both significant challenges and opportunities for enhancing the accuracy of ship detection and tracking through the application of artificial intelligence. This article introduces a multi-object tracking system designed for unmanned aerial vehicles (UAVs), utilizing the YOLOv7 and Deep SORT algorithms for detection and tracking, respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!