Singlet oxygen photo-production by perylene bisimide derivative Langmuir-Schaefer films for photodynamic therapy applications.

J Colloid Interface Sci

Department of Biological and Environmental Sciences and Technology (DiSTeBA), Campus University Ecotekne, University of Salento, Via per Monteroni, I-73100 Lecce, Italy; Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy.

Published: October 2019

A perylene bisimide (PBI) derivative was utilized as photosensitizer for photodynamic therapy (PDT) applications, due to its high efficiency in singlet oxygen generation upon photoexcitation. It was immobilized onto a hydrophobized solid support, by means of the Langmuir-Schaefer (LS) technique, to achieve a preliminary medical device able to induce death of cancer cells in vitro. First, PBI derivative solutions, at two different concentrations (4.2 × 10 and 1.5 × 10 M) were chosen, based on the different PBI aggregation state, to be spread onto a water subphase in a Langmuir trough. Physico-chemical and morphological characterizations of the floating films were performed. Then the floating layers were transferred onto quartz substrates. The resulting multilayer LS films were characterized by spectroscopic measurements showing that the photochemical properties of the PBI derivative were well preserved even when immobilized. The LS film that exhibited the highest efficiency in the singlet oxygen production under light excitation was assessed in in vitro tests on human cervical carcinoma C13 cell line and the photo-toxicity was measured. This study revealed absence of cytotoxicity in dark conditions and a high photo-cytotoxicity toward cancer cells, making it a promising photoactive device.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2019.06.037DOI Listing

Publication Analysis

Top Keywords

singlet oxygen
12
pbi derivative
12
perylene bisimide
8
photodynamic therapy
8
efficiency singlet
8
cancer cells
8
oxygen photo-production
4
photo-production perylene
4
derivative
4
bisimide derivative
4

Similar Publications

The ability to quench reactive oxygen species (ROS) overproduced in plant chloroplasts under light stress conditions is essential for securing plant photosynthetic performance and agricultural yield. Although genetic engineering can enhance plant stress resistance, its widespread application faces limitations due to challenges in successful transformation across plant species and public acceptance concerns. This study proposes a nontransgenic chemical approach using a designed chimeric peptide that scavenges ROS within plant chloroplasts for managing light stress.

View Article and Find Full Text PDF

In this study, Diels-Alder reaction was performed to sulfolene and endo/exo-diacetate compounds. After a series of reactions, new conduritol A and F analogs containing oxo-bridge and naphthalene rings in their structures were synthesized. To the starting compound, bromination, elimination, singlet oxygen reaction, acetylation, selective oxidation with osmium tetroxide (OsO), and m-chloroperbenzoic acid (m-CPBA), re-acetylation, and finally hydrolysis of the compounds by NH(g)/MeOH reactions were carried out.

View Article and Find Full Text PDF

Versatile electrospun cobalt-doped carbon films for rapid antibiotic degradation.

J Environ Manage

December 2024

College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China. Electronic address:

This study presents a novel approach to water contamination remediation by developing cobalt-doped carbon nanofiber films using electrospun ZIF-67 precursors, aiming to degrade tetracycline hydrochloride (TCH) and other antibiotics. This method uniquely combines the advantages of metal-organic frameworks (MOFs) and electrospinning to enhance catalytic performance, demonstrating significant innovation in environmental catalysis. The research systematically evaluated the impact of various factors on the catalytic activity of carbonized PAN@ZIF-67 films (CPZF), including carbonization temperature, ZIF-67 content, and PMS dosage.

View Article and Find Full Text PDF

Ferrous oxalate (FeCO)-based composite has been recognized as an eminent catalyst for Cr(III)-ethylenediamine tetraacetic acid (Cr(III)-EDTA) decomplexation. However, their practical application has been limited by low cycling capacity and an ambiguous mechanism. In this research, a composite catalyst consisting of biotite loaded with nano FeCO (CFS90) was prepared directly from iron-containing silicate tailing.

View Article and Find Full Text PDF

Exploring Gluconamide-Modified Silica Nanoparticles of Different Sizes as Effective Carriers for Antimicrobial Photodynamic Therapy.

Nanomaterials (Basel)

December 2024

Departamento de Química Física, Facultad de Ciencia y Tecnología, Universidad del País Vasco, UPV-EHU, Apartado 644, 48080 Bilbao, Spain.

Antimicrobial resistance (AMR), a consequence of the ability of microorganisms, especially bacteria, to develop resistance against conventional antibiotics, hampering the treatment of common infections, is recognized as one of the most imperative health threats of this century. Antibacterial photodynamic therapy (aPDT) has emerged as a promising alternative strategy, utilizing photosensitizers activated by light to generate reactive oxygen species (ROS) that kill pathogens without inducing resistance. In this work, we synthesized silica nanoparticles (NPs) of different sizes (20 nm, 80 nm, and 250 nm) functionalized with the photosensitizer Rose Bengal (RB) and a gluconamide ligand, which targets Gram-negative bacteria, to assess their potential in aPDT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!