A novel submerged membrane bioreactor integrated with ozonation and photocatalysis has been developed to treat the real textile wastewater and study the fouling behaviour. This study evaluates the performance efficiency in pilot-scale for the three reactors such as membrane bioreactor, ozonised membrane bioreactor and further clubbed with photocatalysis. The membrane filtration consists of polyvinilidine difluoride hollow fibre membrane module having pore size 0.1 μm. Tungsten oxide, a visible photocatalyst was made into spongy alginate beads and used in photocatalytic reactor. The photocatalyst dose has been optimised as 500 mg/L. About 10% membrane filterability ratio has been achieved by integrating ozone with MBR with the maximal ozone dosage of 5 g/h. It showed better removal efficiency in colour and chemical oxygen demand of 94% and 93% respectively. The biodegradability efficiency also was enhanced from 0.2 to 0.4 with optimised ozone dosage (5 g/h). The study on reversible and irreversible fouling has been done to understand the fouling nature. The important analysis such as microbial community and scanning electron microscopy analysis were done to study the biofouling and extent of fouling after filtration. The treatability studies implemented for textile wastewater showed that integrated MBR systems are suitable in meeting the discharge norms prescribed by the Indian statutory body in terms of chemical oxygen demand, colour and total suspended solids.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2019.06.039DOI Listing

Publication Analysis

Top Keywords

membrane bioreactor
16
textile wastewater
12
real textile
8
ozone dosage
8
dosage 5 g/h
8
chemical oxygen
8
oxygen demand
8
membrane
7
evaluation advanced
4
advanced oxidation
4

Similar Publications

Different fates between extracellular and intracellular antimicrobial resistome in full-scale activated sludge and membrane bioreactor processes.

Water Res

January 2025

Faculty of Geosciences and Civil Engineering, Kanazawa University, Kanazawa 920-1192, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, 565-0871, Japan. Electronic address:

Treated effluent of wastewater treatment plants (WWTPs) are major sources of extracellular antimicrobial resistance genes (eARGs) into aquatic environments. This study aimed to clarify the fate and origins of eARGs from influent to treated effluent at a full-scale WWTP. The compositions of eARG and intracellular ARG (iARG) were acquired via shotgun metagenomic sequencing in influent wastewater, activated sludge, and treated effluent of the target WWTP, where identical wastewater was treated by conventional activated sludge (CAS) and membrane bioreactor (MBR) processes.

View Article and Find Full Text PDF

Electro-conductive membranes coupled with a low-voltage electric field can enhance pollutant removal and mitigate membrane fouling, demonstrating significant potential for electrified wastewater treatment. However, efficient fabrication of conductive membranes poses challenges. An in situ oxidative polymerization approach was applied to prepare PVDF-based conductive membranes (PVDF-CMs) and response surface methodology (RSM) was adopted to optimize modification conditions enhancing membrane performance.

View Article and Find Full Text PDF

Biomimetic bioreactor for potentiated uricase replacement therapy in hyperuricemia and gout.

Front Bioeng Biotechnol

January 2025

Department of Rheumatology and Immunology, The Third Affiliated Hospital of Southern Medical University, Institute of Clinical Immunology, Academy of Orthopedics, Guangzhou, Guangdong, China.

Introduction: Uricase replacement therapy is a promising approach for managing hyperuricemia and gout but is hindered by challenges such as short blood circulation time, reduced catalytic activity, and excessive hydrogen peroxide (HO) production. These limitations necessitate innovative strategies to enhance therapeutic efficacy and safety.

Methods: We designed and synthesized RBC@SeMSN@Uri, a red blood cell-coated biomimetic self-cascade bioreactor, which encapsulates uricase (Uri) and a selenium-based nano-scavenger (SeMSN) within RBC membranes.

View Article and Find Full Text PDF

The role of membrane technology in palm oil mill effluent (POME) decontamination: Current trends and future prospects.

J Environ Manage

January 2025

Chemical Engineering Department, Faculty of Industrial Technology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia; Research Center for Biosciences and Biotechnology, Institut Teknologi Bandung, Jl. Ganesha 10, Bandung, 40132, Indonesia.

This article reviews the role of membrane systems in treating palm oil mill effluent (POME), a waste generated by the palm industry. The review focuses on various membrane systems such as microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), highlighting their effectiveness in removing pollutants and recovering water. Special attention is given to hybrid systems integrating membrane bioreactors (MBRs) and other advanced processes to enhance fouling control, improve water quality, and promote sustainability.

View Article and Find Full Text PDF

Effect of polypropylene microplastics on the performance of membrane bioreactors in wastewater treatment.

Environ Res

January 2025

School of Civil Engineering and Architecture, University of Jinan, No. 336 Nanxinzhuang West Road, Jinan, 250022, Shandong Province, PR China. Electronic address:

Membrane bioreactors (MBRs) can effectively remove microplastics (MPs) because of their good rejection performance. However, the influence of MP concentration and particle size on the short-term and long-term operation efficiency of MBRs remains unclear. To address this issue, this study investigated the effects of short-term stress and long-term accumulation of polypropylene microplastics (PP-MPs) with different particle sizes on the operational efficiency of MBRs by running three MBR systems at four concentration stages.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!