AI Article Synopsis

  • The study focuses on the role of 20S proteasomes and their accessory factors in protein degradation within eukaryotic cells, specifically using Spodoptera frugiperda (Sf9) cell extracts to analyze various proteasome complexes.
  • Researchers used techniques like electrophoresis, Western blotting, and mass spectrometry to identify different forms of the 20S proteasome, observing variations such as free core particles and complexes with assembly chaperones and activators.
  • Findings indicate differences in how these complexes regulate substrate access to the proteolytic chamber, revealing distinct mechanisms between ATP-independent and ATP-dependent complexes, alongside confirming the conservation and evolutionary rates of proteasome

Article Abstract

Multiple complexes of 20S proteasomes with accessory factors play an essential role in proteolysis in eukaryotic cells. In this report, several forms of 20S proteasomes from extracts of Spodoptera frugiperda (Sf9) cells were separated using electrophoresis in a native polyacrylamide gel and examined for proteolytic activity in the gel and by Western blotting. Distinct proteasome bands isolated from the gel were subjected to liquid chromatography-tandem mass spectrometry and identified as free core particles (CP) and complexes of CP with one or two dimers of assembly chaperones PAC1-PAC2 and activators PA28γ or PA200. In contrast to the activators PA28γ and PA200 that regulate the access of protein substrates to the internal proteolytic chamber of CP in an ATP-independent manner, the 19S regulatory particle (RP) in 26S proteasomes performs stepwise substrate unfolding and opens the chamber gate in an ATP-dependent manner. Electron microscopic analysis suggested that spontaneous dissociation of RP in isolated 26S proteasomes leaves CPs with different gate sizes related presumably to different stages in the gate opening. The primary structure of 20S proteasome subunits in Sf9 cells was determined by a search of databases and by sequencing. The protein sequences were confirmed by mass spectrometry and verified by 2D gel electrophoresis. The relative rates of sequence divergence in the evolution of 20S proteasome subunits, the assembly chaperones and activators were determined by using bioinformatics. The data confirmed the conservation of regular CP subunits and PA28γ, a more accelerated evolution of PAC2 and PA200, and especially high divergence rates of PAC1.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbapap.2019.06.010DOI Listing

Publication Analysis

Top Keywords

20s proteasome
12
spodoptera frugiperda
8
20s proteasomes
8
sf9 cells
8
mass spectrometry
8
assembly chaperones
8
activators pa28γ
8
pa28γ pa200
8
26s proteasomes
8
proteasome subunits
8

Similar Publications

VPS28 (vacuolar protein sorting 28) is a subunit of the endosomal sorting complexes required for transport (ESCRTs) and is involved in ubiquitination. Ubiquitination is a critical system for protein degradation in eukaryotes. Considering the recent findings on the role of ubiquitination in the regulation of lipid metabolism, we hypothesized that VPS28 might affect the expression of genes involved in milk fat synthesis.

View Article and Find Full Text PDF

Non-steroidal anti-inflammatory drugs (NSAIDs) are recommended to treat moderate-to-severe pain. Previous studies suggest that NSAIDs can suppress cellular proliferation and elevate apoptosis in different cancer cells. Ketorolac is an NSAID and can reduce the cancer cells' viability.

View Article and Find Full Text PDF

Objective: The evaluation of the efficacy of immunotherapy is of great value for the clinical treatment of bladder cancer. Graph Neural Networks (GNNs), pathway analysis and multi-omics analysis have shown great potential in the field of cancer diagnosis and treatment.

Methods: A GNNs model was constructed to predict the immunotherapy response and identify key pathways.

View Article and Find Full Text PDF

A pilot study on the efficacy of a telomerase activator in regulating the proliferation of A375 skin cancer cell line.

Mol Biol Rep

December 2024

Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamilnadu, 600113, India.

Introduction: The changes in histone modifications are linked to the progression of benign and normal tissue to malignancy. Thus, numerous findings suggest that targeting epigenetic factors might be a focus for anti-cancer treatment. In this study, we tested the hypothesis that telomerase activator might be a potential epigenetic regulator in combatting skin cancer cell proliferation.

View Article and Find Full Text PDF

Light is a major determinant of plant growth and survival. NONEXPRESSER OF PATHOGENESIS-RELATED GENES 1 (NPR1) acts as a receptor for salicylic acid (SA) and serves as the key regulator of SA-mediated immune responses. However, the mechanisms by which plants integrate light and SA signals in response to environmental changes, as well as the role of NPR1 in regulating plant photomorphogenesis, remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!