Polymorphic assembly of virus-capsid proteins around DNA and the cellular uptake of the resulting particles.

J Control Release

Laboratory for Biomolecular Nanotechnology, MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, the Netherlands. Electronic address:

Published: August 2019

Virus-like particles (VLPs), i.e. molecular assemblies that resemble the geometry and organization of viruses, are promising platforms for therapeutics and imaging. Understanding the assembly and cellular uptake pathways of VLPs can contribute to the development of new antiviral drugs and new virus-based materials for the delivery of drugs or nucleic acid-based therapies. Here we report the assembly of capsid proteins of the cowpea chlorotic mottle virus (CCMV) around DNA into defined structures at neutral pH. Depending on the type of DNA used, we are able to create spherical structures of various diameters and rods of various lengths. In order to determine the shape dependency, the cellular uptake routes and intracellular positioning of these formed polymorphic VLPs in RAW264.7, HeLa and HEK 293 cells are evaluated using flow cytometry analysis with specific chemical inhibitors for different uptake routes. We observed particular uptake routes for the various CCMV-based nanostructures, but the experiments point to clathrin-mediated endocytosis as the major route for cell entry for the studied VLPs. Confocal microscopy reveals that the formed VLPs enter the cells, with clear colocalization in the endosomes. The obtained results provide insight in the cargo dependent VLP morphology and increase the understanding of shape dependent uptake into cells, which is relevant in the design of new virus-based structures with applications in drug and gene delivery.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jconrel.2019.06.019DOI Listing

Publication Analysis

Top Keywords

cellular uptake
12
uptake routes
12
uptake
6
vlps
5
polymorphic assembly
4
assembly virus-capsid
4
virus-capsid proteins
4
proteins dna
4
dna cellular
4
uptake particles
4

Similar Publications

Aspartate Metabolism-Driven Gut Microbiota Dynamics and RIP-Dependent Mitochondrial Function Counteract Oxidative Stress.

Adv Sci (Weinh)

January 2025

Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Hunan international joint laboratory of Animal Intestinal Ecology and Health, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, 410081, China.

Aspartate (Asp) metabolism-mediated antioxidant functions have important implications for neonatal growth and intestinal health; however, the antioxidant mechanisms through which Asp regulates the gut microbiota and influences RIP activation remain elusive. This study reports that chronic oxidative stress disrupts gut microbiota and metabolite balance and that such imbalance is intricately tied to the perturbation of Asp metabolism. Under normal conditions, in vivo and in vitro studies reveal that exogenous Asp improves intestinal health by regulating epithelial cell proliferation, nutrient uptake, and apoptosis.

View Article and Find Full Text PDF

LINC01224 promotes the Warburg effect in gastric cancer by activating the miR-486-5p/PI3K axis.

In Vitro Cell Dev Biol Anim

January 2025

Gastroenterology Section, Medical Center of Digestive Disease, Zhuzhou Hospital Affiliated to Xiangya School of Medicine, Central South University, Zhuzhou, China.

The Warburg effect, a common feature of solid tumors, rewires the metabolism and promotes growth, survival, proliferation, and long-term maintenance in gastric cancer (GC). We performed in vitro and in vivo studies of the pathogenesis of GC to investigate the effects and mechanism of LINC01224 in this cancer. qRT-PCR was used to measure the expression of LINC01224 or miR-486-5p in GC cells, and the expression of LINC01224 in GC tissues by FISH (Fluorescence in situ hybridization) analysis was evaluated.

View Article and Find Full Text PDF

Platelet membrane-modified exosomes targeting plaques to activate autophagy in vascular smooth muscle cells for atherosclerotic therapy.

Drug Deliv Transl Res

January 2025

Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.

Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.

View Article and Find Full Text PDF

Mitochondria-targeting nanostructures from enzymatically degradable fluorescent amphiphilic polyesters.

Nanoscale

January 2025

School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja. S. C. Mullick Road, Jadavpur, Kolkata 700032, India.

Water-soluble π-conjugated luminescent bioprobes have been broadly used in biomedical research but are limited by the nonbiodegradability associated with their rigid C-C backbones. In the present work, we introduced three naphthalene monoimide (NMI)-functionalized amphiphilic fluorescent polyesters (P1, P2, and P3) prepared by transesterification of functional diols with an activated diester monomer of adipic acid. These polyesters featured a side-chain NMI fluorophore, imparting the required hydrophobicity for self-assembly in water and endowing the polymeric nanoassemblies with green fluorescence.

View Article and Find Full Text PDF

Preclinical and First-In-Human Imaging of Novel [F]F-FAPI-FUSCC-07 Tracer: Comparative Prospective Study with [F]F-FAPI-42 and [F]F-FAPI-74.

Mol Pharm

January 2025

Department of Nuclear Medicine, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.

This study aimed to develop and evaluate a novel fibroblast activation protein (FAP)-specific tracer, fluorine-18-labeled fibroblast activation protein inhibitor-FUSCC-07 ([F]F-FAPI-FUSCC-07), for use in both preclinical and clinical settings. Preclinical evaluations were conducted to assess the stability and partition coefficient of [F]F-FAPI-FUSCC-07. Experiments involving human glioma U87MG cells demonstrated its cellular uptake and inhibitory properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!