Enterobactin, an iron chelating bacterial siderophore, arrests cancer cell proliferation.

Biochem Pharmacol

Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA; Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA. Electronic address:

Published: October 2019

Iron is essential for many biological functions, including being a cofactor for enzymes involved in cell proliferation. In line, it has been shown that cancer cells can perturb their iron metabolism towards retaining an abundant iron supply for growth and survival. Accordingly, it has been suggested that iron deprivation through the use of iron chelators could attenuate cancer progression. While they have exhibited anti-tumor properties in vitro, the current therapeutic iron chelators are inadequate due to their low efficacy. Therefore, we investigated whether the bacterial catecholate-type siderophore, enterobactin (Ent), could be used as a potent anti-cancer agent given its strong iron chelation property. We demonstrated that iron-free Ent can exert cytotoxic effects specifically towards monocyte-related tumor cell lines (RAW264.7 and J774A.1), but not primary cells, i.e. bone marrow-derived macrophages (BMDMs), through two mechanisms. First, we observed that RAW264.7 and J774A.1 cells preserve a bountiful intracellular labile iron pool (LIP), whose homeostasis can be disrupted by Ent. This may be due, in part, to the lower levels of lipocalin 2 (Lcn2; an Ent-binding protein) in these cell lines, whereas the higher levels of Lcn2 in BMDMs could prevent Ent from hindering their LIP. Secondly, we observed that Ent could dose-dependently impede reactive oxygen species (ROS) generation in the mitochondria. Such disruption in LIP balance and mitochondrial function may in turn promote cancer cell apoptosis. Collectively, our study highlights Ent as an anti-cancer siderophore, which can be exploited as an unique agent for cancer therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6733644PMC
http://dx.doi.org/10.1016/j.bcp.2019.06.017DOI Listing

Publication Analysis

Top Keywords

cancer cell
8
cell proliferation
8
iron
8
iron chelators
8
cell lines
8
raw2647 j774a1
8
ent
6
cancer
5
cell
5
enterobactin iron
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!