The rabies rapid fluorescent focus inhibition test (RFFIT) is the most widely used cell-based assay for detecting and quantitating rabies virus neutralizing antibodies (RVNA) in human serum. However, it is a complex, labor intensive, and somewhat subjective manual assay, the performance of which may be affected by a number of factors including the quality of cells and virus, variability of assay reagents and the skill and expertise of analysts. This study sought to identify and evaluate conditions that may impact RFFIT performance and RVNA detection by evaluating assay parameters including: different serial dilution scheme of serum samples in a 96-well microplate using semi-automated pipetting systems, the range of dose of challenge virus standard (CVS-11) strain of rabies virus, the effect of complement (C'), the effect of cell seeding density and passage number, the effect of diethylaminoethyl (DEAE) dextran concentration on virus infectivity, and the assay incubation period prior to immunostaining. In addition the evaluation of counting fluorescent foci using a microscope versus using scanned images from a cell imaging reader was performed in an effort to ease the reading of slides and have permanent records of the raw data. The results from optimization of each parameter are presented along with subsequent assay validation in accordance with the International Conference on Harmonization (ICH) guidelines. The improved and optimized RFFIT accuracy, linearity and sensitivity was demonstrated by testing World Health Organization (WHO)-1 and WHO-2 Standard Rabies Immune Globulins (SRIGs) and complete assay development and validation was performed in compliance with Good Clinical Laboratory Practice (GCLP) guidelines.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jim.2019.06.017DOI Listing

Publication Analysis

Top Keywords

rabies virus
12
rapid fluorescent
8
fluorescent focus
8
focus inhibition
8
inhibition test
8
neutralizing antibodies
8
assay
7
virus
6
rabies
5
test optimization
4

Similar Publications

Extracellular vesicles (EVs) have shown great potential for treating various diseases. Translating EVs-based therapy from bench to bedside remains challenging due to inefficient delivery of EVs to the injured area and lack of techniques to visualize the entire targeting process. Here we developed a dopamine surface functionalization platform that facilitates easy and simultaneous conjugation of targeting peptide and multi-mode imaging probes to the surface of EVs.

View Article and Find Full Text PDF

Introduction: In winter 2021/2022, a wolf population in the primeval Białowieża Forest in Poland was struck by an outbreak of severe mange caused by mixed infestations of and mites. We present an epidemiological analysis of this mange which caused significant morbidity and mortality.

Material And Methods: Ten sites known for wolf activity were monitored by camera trapping.

View Article and Find Full Text PDF

Self-replicating RNA (srRNA) technology, in comparison to mRNA vaccines, has shown dose-sparing by approximately 10-fold and more durable immune responses. However, no improvements are observed in the adverse events profile. Here, we develop an srRNA vaccine platform with optimized non-coding regions and demonstrate immunogenicity and safety in preclinical and clinical development.

View Article and Find Full Text PDF

Unlabelled: mRNA vaccines represent a milestone in the history of vaccinology, because they are safe, very effective, quick and cost-effective to produce, easy to adapt should the antigen vary, and able to induce humoral and cellular immunity.

Methods: To date, only two COVID-19 mRNA and one RSV vaccines have been approved. However, several mRNA vaccines are currently under development for the prevention of human viral (influenza, human immunodeficiency virus [HIV], Epstein-Barr virus, cytomegalovirus, Zika, respiratory syncytial virus, metapneumovirus/parainfluenza 3, Chikungunya, Nipah, rabies, varicella zoster virus, and herpes simplex virus 1 and 2), bacterial (tuberculosis), and parasitic (malaria) diseases.

View Article and Find Full Text PDF

Background: The Vero cell rabies vaccine is currently the most widely used human rabies vaccine. However, owing to the presence of residual host cell DNA (HCD) in the final product and the potential tumorigenicity of the DNA of high-passage Vero cells, the WHO not only sets a limit on the number of times cells used in production can be passaged, but also imposes strict requirements on the amount of residual HCD in the final vaccine product.

Objectives: To systematically reduce the HCD level in the final vaccine product, multiple purification steps are included in the vaccine production process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!