Evaluating intermuscular Golgi tendon organ feedback with twitch contractions.

J Physiol

School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.

Published: September 2019

Key Points: Golgi tendon organ feedback has been evaluated most frequently using electrical stimulation of peripheral nerves, which is not a physiological or selective stimulus for Golgi tendon organs. Golgi tendon organs are most responsive to active muscle contractions. This study provides evidence that muscle stimulation evoked twitches - a physiological stimulus for Golgi tendon organs - induces intermuscular effects most likely due to mechanical activation of Golgi tendon organ feedback and not direct activation of sensory axons. The results demonstrate that twitch contractions are a feasible non-invasive approach that can be used to advance understanding of the functional role of Golgi tendon organ feedback.

Abstract: Force feedback from Golgi tendon organs (GTOs) has widespread intermuscular projections mediated by interneurons that share inputs from muscle spindles, among others. Because current methods to study GTO circuitry (nerve stimulation or muscle stretch) also activate muscle spindle afferents, the selective role of GTOs remains uncertain. Here, we tested the hypothesis that intramuscular stimulation evoked twitch contractions could be used to naturally bias activation of GTOs and thus evaluate their intermuscular effects in decerebrate cats. This was achieved by comparing the effects of twitch contractions and stretches as donor inputs onto the motor output of recipient muscles. Donor-recipient pairs evaluated included those already known in the cat to receive donor excitatory muscle spindle feedback only, inhibitory GTO feedback only, and both excitatory spindle and inhibitory GTO effects. Muscle stretch, but not twitch contractions, evoked excitation onto recipient muscles with muscle spindle afferent inputs only. Both donor muscle stretch and twitch contractions inhibited a recipient muscle with GTO projections only. In a recipient muscle that receives both muscle spindle and GTO projections, donor muscle stretch evoked both excitatory and inhibitory effects, whereas twitch contractions evoked inhibitory effects only. These data support the hypothesis that muscle stimulation evoked contractions can induce intermuscular effects most consistent with mechanical GTO receptor activation and not direct activation of sensory axons. We propose this approach can be used to evaluate GTO circuitry more selectively than muscle stretch or nerve stimulation and can be adapted to study GTO feedback non-invasively in freely moving cats and humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6717046PMC
http://dx.doi.org/10.1113/JP277363DOI Listing

Publication Analysis

Top Keywords

golgi tendon
32
twitch contractions
28
muscle stretch
20
tendon organ
16
tendon organs
16
muscle spindle
16
muscle
15
organ feedback
12
stimulation evoked
12
intermuscular effects
12

Similar Publications

Neuromechanical Circuits of the Spinal Motor Apparatus.

Compr Physiol

December 2024

School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA.

The evolution of mechanisms for terrestrial locomotion has resulted in multi-segmented limbs that allow navigation on irregular terrains, changing of direction, manipulation of external objects, and control over the mechanical properties of limbs important for interaction with the environment, with corresponding changes in neural pathways in the spinal cord. This article is focused on the organization of these pathways, their interactions with the musculoskeletal system, and the integration of these neuromechanical circuits with supraspinal mechanisms to control limb impedance. It is argued that neural pathways from muscle spindles and Golgi tendon organs form a distributive impedance controller in the spinal cord that controls limb impedance and coordination during responses to external disturbances.

View Article and Find Full Text PDF

Between 1878 and 1880 Camillo Golgi, professor of Histology and General Pathology at the University of Pavia, studied the termination of the nerves inside the tendons, near their muscular insertion. He defined two fundamental categories of corpuscles. The first type, which he called muscle-tendon terminal organs, was morphologically characterized by spindle structures which at one end seemed to relate to the muscle fibers while at the other end they gradually merged with the tendon bundles.

View Article and Find Full Text PDF

Background: Recent findings suggest increased excitatory heteronymous feedback from quadriceps onto soleus may contribute to abnormal coactivation of knee and ankle extensors after stroke. However, there is lack of consensus on whether persons post-stroke exhibit altered heteronymous reflexes and, when present, the origin of increased excitation (i.e.

View Article and Find Full Text PDF

Heteronymous inhibition between lower limb muscles is primarily attributed to recurrent inhibitory circuits in humans but could also arise from Golgi tendon organs (GTOs). Distinguishing between recurrent inhibition and mechanical activation of GTOs is challenging because their heteronymous effects are both elicited by stimulation of nerves or a muscle above motor threshold. Here, the unique influence of mechanically activated GTOs was examined by comparing the magnitude of heteronymous inhibition from quadriceps (Q) muscle stimulation onto ongoing soleus electromyographic at five Q stimulation intensities (1.

View Article and Find Full Text PDF

Four hours of normobaric hypoxia reduces Achilles tendon reflex inhibition.

J Appl Physiol (1985)

June 2024

Centre for Heart, Lung, and Vascular Health, School of Health and Exercise Sciences, The University of British Columbia, Kelowna, British Columbia, Canada.

Acute exposure to hypoxia increases postural sway, but the underlying neurophysiological factors are unclear. Golgi tendon organs (GTOs), located within the musculotendinous junction (MTJ), provide inhibitory signals to plantar flexor muscles that are important for balance control; however, it is uncertain if GTO function is influenced by hypoxia. The aim of this study was to determine how normobaric hypoxia influences lower limb tendon-evoked inhibitory reflexes during upright stance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!