Carbon nano-onions (CNOs), metal-organic frameworks (MOF-199), and carbon nano-onion embedded metal-organic frameworks (CMOF-199) were synthesized from garlic peels as a green source of carbon atoms while MOF-199 was prepared by solvothermal interaction between 1,3,5-benzenetricarboxylic acid and copper nitrate trihydrate. All the prepared solid materials were characterized by nitrogen adsorption/desorption isotherm, transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), thermogravimetric analysis (TGA), point of zero charge (pH), and Fourier transform infrared spectroscopy (FTIR). Adsorption of cadmium ions from aqueous solution was investigated onto all prepared solid materials considering different application conditions such as adsorbent dosage, pH, contact time, initial concentration of Cd, and temperature. Adsorption of Cd was investigated by Langmuir, Freundlich, Temkin, and Dubinin-Radhushkevich adsorption isotherm models. Maximum adsorption capacity (113.3 mg g) was achieved by CMOF-199 at 40 °C. The adsorption of Cd obeys pseudo-second-order kinetic model. Thermodynamic studies confirmed that the adsorption process is spontaneous, favorable, endothermic, and physisorption. Adsorption results proved that carbon nano-onion embedded metal-organic frameworks are promising solid adsorbents for cadmium ion adsorption.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-019-05581-5DOI Listing

Publication Analysis

Top Keywords

metal-organic frameworks
16
carbon nano-onion
12
nano-onion embedded
12
embedded metal-organic
12
cadmium ions
8
thermodynamic studies
8
prepared solid
8
solid materials
8
adsorption
8
synthesis carbon
4

Similar Publications

The mechanical properties of metal-organic frameworks (MOFs) are of high fundamental and practical relevance. A particularly intriguing technique for determining anisotropic elastic tensors is Brillouin scattering, which so far has rarely been used for highly complex materials like MOFs. In the present contribution, we apply this technique to study a newly synthesized MOF-type material, referred to as GUT2.

View Article and Find Full Text PDF

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

This review examines the recent advancements and unique properties of polymer-inorganic hybrid materials formed through coordination bonding (Class II hybrids), which enable enhanced functionality and stability across various applications. Here, we categorize these materials based on properties gained through complexation, focusing on electrical conductivity, thermal stability, photophysical characteristics, catalytic activity, and nanoscale self-assembly. Two major synthetic approaches to making these hybrids include homogeneous and heterogeneous methods, each with distinct tradeoffs: Homogeneous synthesis is straightforward but requires favorable mixing between inorganic and polymer species, which are predominantly water-soluble complexes.

View Article and Find Full Text PDF

A covalent organic framework (COF) has emerged as a promising photocatalyst for the removal of pharmaceutical and personal care product (PPCP) contaminants; however, high-performance COF photocatalysts are still scarce. In this study, three COF photocatalysts were successfully synthesized by the condensation of benzo[1,2-b:3,4-b':5,6-b'']trithiophene-2,5,8-tricarbaldehyde (BTT) with 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (TAPT), 1,3,5-Tris(4-aminophenyl)benzene (TAPB), and 4,4',4''-nitrilotris(benzenamine) (TAPA), namely, BTT-TAPA, BTT-TAPB, and BTT-TAPT, respectively. The surface areas of BTT-TAPA, BTT-TAPB, and BTT-TAPT were found to be 800.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have become a highly usable system in various sectors because of their highly ordered structure and high porosity providing them with high storage capacity. However, their use is sometimes forbidden in the food industry due to the presence of some organic compounds which have undesirable effects. Cyclodextrins, which are considered GRAS (Generally Recognized as Safe) by the FDA, comes as a very good alternative to previously used compounds for the development of the MOFs to be used in the food packaging industry, especially in the packaging sector.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!