Robust dynamical invariants in sequential neural activity.

Sci Rep

Grupo de Neurocomputación Biológica, Dpto. de Ingeniería Informática, Escuela Politécnica Superior, Universidad Autónoma de Madrid, 28049, Madrid, Spain.

Published: June 2019

By studying different sources of temporal variability in central pattern generator (CPG) circuits, we unveil fundamental aspects of the instantaneous balance between flexibility and robustness in sequential dynamics -a property that characterizes many systems that display neural rhythms. Our analysis of the triphasic rhythm of the pyloric CPG (Carcinus maenas) shows strong robustness of transient dynamics in keeping not only the activation sequences but also specific cycle-by-cycle temporal relationships in the form of strong linear correlations between pivotal time intervals, i.e. dynamical invariants. The level of variability and coordination was characterized using intrinsic time references and intervals in long recordings of both regular and irregular rhythms. Out of the many possible combinations of time intervals studied, only two cycle-by-cycle dynamical invariants were identified, existing even outside steady states. While executing a neural sequence, dynamical invariants reflect constraints to optimize functionality by shaping the actual intervals in which activity emerges to build the sequence. Our results indicate that such boundaries to the adaptability arise from the interaction between the rich dynamics of neurons and connections. We suggest that invariant temporal sequence relationships could be present in other networks, including those shaping sequences of functional brain rhythms, and underlie rhythm programming and functionality.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588702PMC
http://dx.doi.org/10.1038/s41598-019-44953-2DOI Listing

Publication Analysis

Top Keywords

dynamical invariants
16
time intervals
8
robust dynamical
4
invariants
4
invariants sequential
4
sequential neural
4
neural activity
4
activity studying
4
studying sources
4
sources temporal
4

Similar Publications

Zintl compounds have garnered research interest due to their diverse technological applications. Utilizing first-principles calculations, we performed a systematic study of ABX (A = Li, Na, K, Rb, or Cs; B = Si, Ge, Sn, or Pb; and X = P, As, Sb, or Bi) Zintl materials with the 6 KSnSb-type structure. Notably, six ABX Zintl compounds (RbSiBi, CsSiBi, LiGeBi, KGeBi, RbGeBi, and CsGeBi) were found to have topologically nontrivial phases, as demonstrated by the invariant computed using the hybrid functional HSE06.

View Article and Find Full Text PDF

Phaseless Auxiliary-Field Quantum Monte Carlo Method for Cavity-QED Matter Systems.

J Chem Theory Comput

January 2025

Center for Computational Quantum Physics, The Flatiron Institute, 162 Fifth Avenue, New York, New York, 10010, United States.

We present a generalization of the phaseless auxiliary-field quantum Monte Carlo (AFQMC) method to cavity quantum-electrodynamical (QED) matter systems. The method can be formulated in both the Coulomb and the dipole gauge. We verify its accuracy by benchmarking calculations on a set of small molecules against full configuration interaction and state-of-the-art QED coupled cluster (QED-CCSD) calculations.

View Article and Find Full Text PDF

Revealing the Potential-Dependent Rate-Determining Step of Oxygen Reduction Reaction on Single-Atom Catalysts.

J Am Chem Soc

January 2025

Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China.

Single-atom catalysts (SACs) have attracted widespread attention due to their potential to replace platinum-based catalysts in achieving efficient oxygen reduction reaction (ORR), yet the rational optimization of SACs remains challenging due to their elusive reaction mechanisms. Herein, by employing ab initio molecular dynamics simulations and a thermodynamic integration method, we have constructed the potential-dependent free energetics of ORR on a single iron atom catalyst dispersed on nitrogen-doped graphene (Fe-N/C) and further integrated these parameters into a microkinetic model. We demonstrate that the rate-determining step (RDS) of the ORR on SACs is potential-dependent rather than invariant within the operative potential range.

View Article and Find Full Text PDF

Human immunodeficiency virus (HIV) manifests multiple infections in CD4+ T cells, by binding its envelope proteins to CD4 receptors. Understanding these biological processes is crucial for effective interventions against HIV/AIDS. Here, we propose a mathematical model that accounts for the multiple infections of CD4+ T cells and an intracellular delay in the dynamics of HIV infection.

View Article and Find Full Text PDF

Full-dimensional accurate potential energy surface and dynamics for the unimolecular isomerization reaction CH3NC ⇌ CH3CN.

J Chem Phys

January 2025

School of Chemistry and Chemical Engineering and Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, China.

The reaction CH3NC ⇌ CH3CN, a model reaction for the study of unimolecular isomerization, is important in astronomy and atmospheric chemistry and has long been studied by numerous experiments and theories. In this work, we report the first full-dimensional accurate potential energy surface (PES) of this reaction by the permutation invariant polynomial-neural network method based on 30 974 points, whose energies are calculated at the CCSD(T)-F12a/AVTZ level. Then, ring polymer molecular dynamics is used to derive the free energy barrier of the reaction at the experimental temperature range of 472.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!