Background: Deep learning has made spectacular achievements in analysing natural images, but it faces challenges for medical applications partly due to inadequate images.
Objective: Aiming to classify malignant and benign pulmonary nodules using CT images, we explore different strategies to utilize the state-of-the-art deep convolutional neural networks (CNN).
Methods: Experiments are conducted using the Lung Image Database Consortium image collection (LIDC-IDRI), which is a public database containing 1018 cases. Three strategies are implemented including to 1) modify some state-of-the-art CNN architectures, 2) integrate different CNNs and 3) adopt transfer learning. Totally, 11 deep CNN models are compared using the same dataset.
Results: Study demonstrates that, for the model modification scheme, a concise CifarNet performs better than the other modified CNNs with more complex architectures, achieving an area under ROC curve of AUC = 0.90. Integrated CNN models do not significantly improve the classification performance, but the model complexity is reduced. Transfer learning outperforms the other two schemes and ResNet with fine-tuning leads to the best performance with an AUC = 0.94, as well as the sensitivity of 91% and an overall accuracy of 88%.
Conclusions: Model modification, model integration, and transfer learning can play important roles to identify and generate optimal deep CNN models in classifying pulmonary nodules based on CT images efficiently. Transfer learning is preferred when applying deep learning to medical imaging applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3233/XST-180490 | DOI Listing |
Biol Direct
January 2025
National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.
Background: Carotid atherosclerotic plaque is the primary cause of cardiovascular and cerebrovascular diseases. It is closely related to oxidative stress and immune inflammation. This bioinformatic study was conducted to identify key oxidative stress-related genes and key immune cell infiltration involved in the formation, progression, and stabilization of plaques and investigate the relationship between them.
View Article and Find Full Text PDFJ Orthop Surg Res
January 2025
Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225000, China.
Rheumatoid arthritis (RA), a chronic inflammatory joint disease causing permanent disability, involves exosomes, nanosized mammalian extracellular particles. Circular RNA (circRNA) serves as a biomarker in RA blood samples. This research screened differentially expressed circRNAs in RA patient plasma exosomes for novel diagnostic biomarkers.
View Article and Find Full Text PDFJ Cheminform
January 2025
School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.
G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.
View Article and Find Full Text PDFCell Div
January 2025
Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.
Background: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times.
View Article and Find Full Text PDFParasit Vectors
January 2025
Faculty of Information Technology, Mutah University, Mutah, Jordan.
Background: Amebiasis represents a significant global health concern. This is especially evident in developing countries, where infections are more common. The primary diagnostic method in laboratories involves the microscopy of stool samples.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!