Background: Deep learning has made spectacular achievements in analysing natural images, but it faces challenges for medical applications partly due to inadequate images.

Objective: Aiming to classify malignant and benign pulmonary nodules using CT images, we explore different strategies to utilize the state-of-the-art deep convolutional neural networks (CNN).

Methods: Experiments are conducted using the Lung Image Database Consortium image collection (LIDC-IDRI), which is a public database containing 1018 cases. Three strategies are implemented including to 1) modify some state-of-the-art CNN architectures, 2) integrate different CNNs and 3) adopt transfer learning. Totally, 11 deep CNN models are compared using the same dataset.

Results: Study demonstrates that, for the model modification scheme, a concise CifarNet performs better than the other modified CNNs with more complex architectures, achieving an area under ROC curve of AUC = 0.90. Integrated CNN models do not significantly improve the classification performance, but the model complexity is reduced. Transfer learning outperforms the other two schemes and ResNet with fine-tuning leads to the best performance with an AUC = 0.94, as well as the sensitivity of 91% and an overall accuracy of 88%.

Conclusions: Model modification, model integration, and transfer learning can play important roles to identify and generate optimal deep CNN models in classifying pulmonary nodules based on CT images efficiently. Transfer learning is preferred when applying deep learning to medical imaging applications.

Download full-text PDF

Source
http://dx.doi.org/10.3233/XST-180490DOI Listing

Publication Analysis

Top Keywords

transfer learning
20
cnn models
16
deep cnn
12
model modification
12
modification model
8
model integration
8
integration transfer
8
deep learning
8
pulmonary nodules
8
learning
7

Similar Publications

Exploring the role of oxidative stress in carotid atherosclerosis: insights from transcriptomic data and single-cell sequencing combined with machine learning.

Biol Direct

January 2025

National Key Laboratory for Innovation and Transformation of Luobing Theory; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, Jinan, China.

Background: Carotid atherosclerotic plaque is the primary cause of cardiovascular and cerebrovascular diseases. It is closely related to oxidative stress and immune inflammation. This bioinformatic study was conducted to identify key oxidative stress-related genes and key immune cell infiltration involved in the formation, progression, and stabilization of plaques and investigate the relationship between them.

View Article and Find Full Text PDF

Unveiling new therapeutic horizons in rheumatoid arthritis: an In-depth exploration of circular RNAs derived from plasma exosomes.

J Orthop Surg Res

January 2025

Department of Rheumatology and Immunology, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Middle Road, Yangzhou, Jiangsu, 225000, China.

Rheumatoid arthritis (RA), a chronic inflammatory joint disease causing permanent disability, involves exosomes, nanosized mammalian extracellular particles. Circular RNA (circRNA) serves as a biomarker in RA blood samples. This research screened differentially expressed circRNAs in RA patient plasma exosomes for novel diagnostic biomarkers.

View Article and Find Full Text PDF

AiGPro: a multi-tasks model for profiling of GPCRs for agonist and antagonist.

J Cheminform

January 2025

School of Systems Biomedical Science, Soongsil University, 369 Sangdo-ro, Dongjak-gu, 06978, Seoul, Republic of Korea.

G protein-coupled receptors (GPCRs) play vital roles in various physiological processes, making them attractive drug discovery targets. Meanwhile, deep learning techniques have revolutionized drug discovery by facilitating efficient tools for expediting the identification and optimization of ligands. However, existing models for the GPCRs often focus on single-target or a small subset of GPCRs or employ binary classification, constraining their applicability for high throughput virtual screening.

View Article and Find Full Text PDF

Detection of early relapse in multiple myeloma patients.

Cell Div

January 2025

Babak Myeloma Group, Department of Pathophysiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.

Background: Multiple myeloma (MM) represents the second most common hematological malignancy characterized by the infiltration of the bone marrow by plasma cells that produce monoclonal immunoglobulin. While the quality and length of life of MM patients have significantly increased, MM remains a hard-to-treat disease; almost all patients relapse. As MM is highly heterogenous, patients relapse at different times.

View Article and Find Full Text PDF

Background: Amebiasis represents a significant global health concern. This is especially evident in developing countries, where infections are more common. The primary diagnostic method in laboratories involves the microscopy of stool samples.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!