A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Isolated cellulose nanofibers for Cu (II) and Zn (II) removal: performance and mechanisms. | LitMetric

Isolated cellulose nanofibers for Cu (II) and Zn (II) removal: performance and mechanisms.

Carbohydr Polym

Department of Civil and Environmental Engineering, University of Alberta, T6G 1H9, Canada. Electronic address:

Published: October 2019

TEMPO-oxidized cellulose nanofibers (TOCNFs) were prepared and investigated as low-cost adsorbents for the removal of Cu (II) and Zn (II) from synthetic and natural waters. The adsorption equilibrium was reached within 2 min and adsorption capacity was as high as 102.9 mg g for Cu (II) and 73.9 mg g for Zn (II). Ionic strength showed adverse effect on adsorption capacity, however, TOCNFs with higher carboxymethyl content were less influenced due to their resistance to aggregation. Copper adsorption exhibited strong selectivity over the tested common cations. The adsorptions of Cu (II) and Zn (II) onto TOCNF were endothermic but spontaneous processes, and the binding was driven by entropy increase. A combined interaction mechanism, including ion exchange, coordination and accumulation, was proposed based on the study. All the findings confirmed the great potential of TOCNF application in water purification and reclamation approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2019.05.078DOI Listing

Publication Analysis

Top Keywords

cellulose nanofibers
8
adsorption capacity
8
isolated cellulose
4
nanofibers removal
4
removal performance
4
performance mechanisms
4
mechanisms tempo-oxidized
4
tempo-oxidized cellulose
4
nanofibers tocnfs
4
tocnfs prepared
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!