Jietacins, azoxy natural products, as novel NF-κB inhibitors: Discovery, synthesis, biological activity, and mode of action.

Eur J Med Chem

Division of Hematology, Department of Laboratory Sciences, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan; Department of Molecular Hematology, Faculty of Molecular Medical Biology, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa, 252-0373, Japan. Electronic address:

Published: September 2019

Deregulation of NF-κB plays an important role in various diseases by controlling cell growth, inflammation, the immune response, and cytokine production. Although many NF-κB inhibitors have been developed, to the best of our knowledge, none of them have been successfully translated into clinical practice as medicines. To overcome this issue, we aimed to develop a new class of NF-κB inhibitors. Previous reports indicated that the N-terminal cysteine is a promising target for NF-κB. Based on this, we first selected 10 natural products or their derivatives from the natural product library that we developed and examined the effect on NF-κB and the viability of cancer cells with constitutively strong NF-κB activity. Among them, we found that an azoxy natural product, jietacin A, with a vinylazoxy group and an aliphatic side chain, reduced cell viability and inhibited nuclear translocation of free NF-κB. In addition, we performed design, synthesis, and biological evaluation of jietacin derivatives for development of a novel NF-κB inhibitor. Of these derivatives, a fully synthesized derivative 25 with vinylazoxy and ynone groups had a potent effect. We clarified the structure-activity relationship of this compound. Jietacin A and 25 also inhibited tumor necrosis factor-α-mediated induction of NF-κB. The NF-κB inhibitory effect depended on the N-terminal cysteine and the neighboring Arg-Ser-Ala-Gly-Ser-Ile (RSAGSI) domain of NF-κB. We also found that 25 inhibited the association between NF-κB and importin α, suggesting inhibition of NF-κB at an early step of nuclear translocation. Overall, this study indicated that the vinylazoxy motif may compose a new class of NF-κB inhibitors, providing further insight for rational drug design and rendering a unique mode of action.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2019.05.079DOI Listing

Publication Analysis

Top Keywords

nf-κb inhibitors
16
nf-κb
15
azoxy natural
8
natural products
8
novel nf-κb
8
synthesis biological
8
mode action
8
class nf-κb
8
n-terminal cysteine
8
natural product
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!