Postoperative bone loss and increased fracture risk associated with Roux-en-Y gastric bypass (RYGB) have been attributed to vitamin D/calcium malabsorption and resultant secondary hyperparathyroidism (HPT). Adequate vitamin D supplementation (VDS), particularly in an older female population, reduces incidence of secondary HPT but the effect on bone loss and fracture risk remains unclear. To investigate whether VDS corrects the RYGB bone phenotype, 41 obese adult female rats were randomized to RYGB with 1000 IU (R1000) or 5000 IU (R5000) vitamin D/kg food or a sham surgical procedure with either paired (PF) or ad libitum (AL) feeding. Bone turnover markers, urinary calcium/creatinine ratio (CCR), and serum calciotropic and gut hormones were assessed throughout a 14-week postoperative period. Femurs were analyzed by micro-computed tomography (μCT), three-point bending test, and histomorphometry. 1000 IU animals had low 25‑hydroxyvitamin D (25(OH)D), high serum parathyroid hormone (PTH), and very low urine CCR levels. 5000 IU corrected the 25(OH)D and secondary HPT but did not increase urine CCR or serum levels of 1,25‑dihydroxyvitamin D (1,25(OH)D) significantly between RYGB groups. Compared to sham animals at 14 weeks, RYGB animals had significantly higher serum osteocalcin (OCN) and C-terminal telopeptide (CTX) levels. The gut hormone peptide tyrosine tyrosine hormone (PYY) was higher in the RYGB groups, and leptin was lower. μCT and biomechanical testing revealed RYGB females had decreased cortical and trabecular bone volume and weaker, stiffer bone than controls. Histomorphometry showed decreased bone volume and increased osteoid volume with increased mineral apposition rate in RYGB compared to controls. No differences in bone phenotype were identified between 1000 IU and 5000 IU groups, and osteoclast numbers were comparable across all four groups. Thus, in our model, 5000 IU VDS corrected vitamin D deficiency and secondary HPT but did not rescue RYGB mineralization rate nor the osteomalacia phenotype. Longer studies in this model are required to evaluate durability of these detrimental effects. Our findings not only underscore the importance of lifelong repletion of both calcium and vitamin D but also suggest that additional factors affect skeletal health in this population.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6708762PMC
http://dx.doi.org/10.1016/j.bone.2019.06.015DOI Listing

Publication Analysis

Top Keywords

bone loss
12
secondary hpt
12
bone
9
rygb
9
vitamin supplementation
8
roux-en-y gastric
8
gastric bypass
8
female rats
8
fracture risk
8
bone phenotype
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!