Peritoneal fibrosis and loss of transport function is a common complication contributing to adverse outcomes in patients on long-term peritoneal dialysis (PD). Epithelial-to-mesenchymal transition (EMT) in mesothelial cells is a salient feature, but its triggering mechanisms remain obscure. Dysregulation of microRNA (miR) expression is implicated in EMT and tissue fibrosis. We investigated the role of miR-200c in EMT and fibrogenesis in a murine PD model and in cultured peritoneal mesothelial cells. PD-fluid-treated mice showed peritoneal miR-200c expression reduced by 76.2% compared with PBS-treated mice, and this was accompanied by increased peritoneal α-smooth muscle actin, fibronectin, and collagen expression. PD fluid and TGF-β1 both reduced miR-200c expression in cultured mesothelial cells, accompanied by downregulation of E-cadherin and decorin, and induction of fibronectin, collagen I and III, and transcription factors related to EMT. Decorin prevented the suppression of miR-200c by TGF-β1. Lentivirus-mediated miR-200c overexpression prevented the induction of fibronectin, collagen I, and collagen III by TGF-β1, independent of decorin, and partially prevented E-cadherin suppression by TGF-β1. Target genes of miR-200c were identified as ZEB2 and Notch1. Our data demonstrate that miR-200c regulates EMT and fibrogenesis in mesothelial cells, and loss of peritoneal miR-200c contributes to PD-associated peritoneal fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586597PMC
http://dx.doi.org/10.1016/j.omtn.2019.05.008DOI Listing

Publication Analysis

Top Keywords

mesothelial cells
20
fibronectin collagen
12
mir-200c
9
epithelial-to-mesenchymal transition
8
fibrogenesis mesothelial
8
zeb2 notch1
8
peritoneal fibrosis
8
emt fibrogenesis
8
peritoneal mir-200c
8
mir-200c expression
8

Similar Publications

Peritoneal dialysis (PD) serves as a home-based kidney replacement therapy with increasing utilization across the globe. However, long-term use of high-glucose-based PD solution incites repeated peritoneal injury and inevitable peritoneal fibrosis, thus compromising treatment efficacy and resulting in ultrafiltration failure eventually. In the present study, we utilized human mesothelial MeT-5A cells for the in vitro experiments and a PD mouse model for in vivo validation to study the pathophysiological mechanisms underneath PD-associated peritoneal fibrosis.

View Article and Find Full Text PDF

Background: Peritoneal dissemination of ovarian cancer (OvCa) can be largely attributed to the formation of a metastatic microenvironment driven by tumoral exosomes. Here, we aimed to elucidate the mechanisms through which exosomal annexin A2 (ANXA2) derived from OvCa cells induces an HPMC phenotypic shift in favour of peritoneal metastasis.

Methods: Immunohistochemistry and orthotopic and intraperitoneal OvCa xenograft mouse models were used to clarify the relationship between tumour ANXA2 expression and peritoneal metastasis.

View Article and Find Full Text PDF

Background: Glycolysis plays a major role in progression of idiopathic pulmonary fibrosis (IPF). Here, we aim to explore the predictive signature based on glycolysis-related genes for predicting the prognosis and identified a potential therapeutic target for IPF.

Methods: Gene expression data of bronchoalveolar lavage (BAL) cells and clinical information were downloaded from the Gene Expression Omnibus database.

View Article and Find Full Text PDF

Cancer adhesion to the mesothelium is critical for peritoneal metastasis, but how metastatic cells adapt to the biomechanical microenvironment remains unclear. Our study demonstrates that highly metastatic (HM), but not non-metastatic, ovarian cancer cells selectively activate the peritoneal mesothelium. HM cells exert a stronger adhesive force on mesothelial cells via P-cadherin, an adhesion molecule abundant in late-stage tumors.

View Article and Find Full Text PDF

Unveiling adipose populations linked to metabolic health in obesity.

Cell Metab

December 2024

Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland. Electronic address:

Precision medicine is still not considered as a standard of care in obesity treatment, despite a large heterogeneity in the metabolic phenotype of individuals with obesity. One of the strongest factors influencing the variability in metabolic disease risk is adipose tissue (AT) dysfunction; however, there is little understanding of the link between distinct cell populations, cell-type-specific transcriptional programs, and disease severity. Here, we generated a comprehensive cellular map of subcutaneous and visceral AT of individuals with metabolically healthy and unhealthy obesity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!