Following protein adsorption/activation which is the first step after the contact of material surfaces and whole blood (part 2), fibrinogen is converted to fibrin and platelets become activated and assembled in the form of a thrombus. This thrombus formation is the key feature that needs to be minimized in the creation of materials with low thrombogenicity. Further aspects of blood compatibility that are important on their own are complement and leukocyte activation which are also important drivers of thrombus formation. Hence this review summarizes the state of knowledge on all of these cascades and cells and their interactions. For each cascade or cell type, the chapter distinguishes statements which are in widespread agreement from statements where there is less of a consensus. STATEMENT OF SIGNIFICANCE: This paper is part 3 of a series of 4 reviews discussing the problem of biomaterial associated thrombogenicity. The objective was to highlight features of broad agreement and provide commentary on those aspects of the problem that were subject to dispute. We hope that future investigators will update these reviews as new scholarship resolves the uncertainties of today.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2019.06.020 | DOI Listing |
Int J Biol Macromol
January 2025
School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China; School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China. Electronic address:
Activated carbon is extensively utilized in blood purification applications. However, its performance has been significantly limited by their poor blood compatibility. In this work, 2,2,6,6-tetramethylpiperidinyl-1-oxyl (TEMPO)-oxidized cellulose nanofibers (TOCN) and activated carbon (AC) were used to form composite beads by the drop curing method to improve hemocompatibility.
View Article and Find Full Text PDFOrphanet J Rare Dis
January 2025
Department of Translational Medicine, University of Naples "Federico II", Naples, Italy.
Background: Newborn screening (NBS) programs have significantly improved the health and outcomes of patients with inherited metabolic disorders (IMDs). Methods based on liquid chromatography/mass spectrometry (LC-MS/MS) analysis are viewed worldwide as the gold standard procedure for the expanded NBS programs for these disorders. Advanced molecular technologies point to genomic sequencing as an alternative and feasible strategy for the screening of genetic diseases, including IMDs.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
Single-cell RNA sequencing (scRNA-seq) is a valuable tool for investigating cellular heterogeneity in diseases such as equine asthma (EA). This study evaluates the HIVE™ scRNA-seq method, a pico-well-based technology, for processing bronchoalveolar lavage (BAL) cells from horses with EA. The HIVE method offers practical advantages, including compatibility with both field and clinical settings, as well as a gentle workflow suited for handling sensitive cells.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Medical and Surgical Sciences and Advanced Technologies "G. F. Ingrassia", University of Catania, Catania, Italy.
Background: To date, few data to transcranial Doppler sonography (TCD) are available in patients with mild vascular cognitive impairment (VCI) at risk for vascular or mixed dementia. In a previous study in patients with mild VCI and cerebral small vessels disease, a hemodynamic pattern of cerebral hypoperfusion and enhanced vascular resistance were observed; however, longitudinal data are currently lacking. Here, we perform a clinical, psychopathological, and neurosonological follow-up of patients with VCI in order to monitor any progression and to identify TCD measures to detect it.
View Article and Find Full Text PDFToxins (Basel)
January 2025
Unité des Toxines Bactériennes, Institut Pasteur, Université Paris Cité, CNRS UMR 2001 INSERM U1306, 75015 Paris, France.
Multiple sclerosis (MS) is a chronic immune-mediated neurological disorder, characterized by progressive demyelination and neuronal cell loss in the central nervous system. Many possible causes of MS have been proposed, including genetic factors, environmental triggers, and infectious agents. Recently, epsilon toxin (ETX) has been incriminated in MS, based initially on the isolation of the bacteria from a MS patient, combined with an immunoreactivity to ETX.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!