A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanisms of sublethal copper toxicity damage to the photosynthetic apparatus of Rhodospirillum rubrum. | LitMetric

Mechanisms of sublethal copper toxicity damage to the photosynthetic apparatus of Rhodospirillum rubrum.

Biochim Biophys Acta Bioenerg

Biology Centre of the Czech Academy of Sciences, Institute of Plant Molecular Biology, Department of Plant Biophysics & Biochemistry, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic; University of South Bohemia, Faculty of Science, Department of Experimental Plant Biology, Branišovská 31/1160, 370 05 České Budějovice, Czech Republic. Electronic address:

Published: August 2019

Magnesium (Mg) is the ubiquitous metal ion present in chlorophyll and bacteriochlorophyll (BChl), involved in photosystems in photosynthetic organisms. In the present study we investigated targets of toxic copper binding to the photosynthetic apparatus of the anoxygenic purple bacterium Rhodospirillum rubrum. This was done by a combination of in vivo measurements of flash photolysis and fast fluorescence kinetics combined with the analysis of metal binding to pigments and pigment-protein complexes isolated from Cu-stressed cells by HPLC-ICPMS (ICP-sfMS). This work concludes that R. rubrum is highly sensitive to Cu, with a strong inhibition of the photosynthetic reaction centres (RCs) already at 2 μM Cu. The inhibition of growth and of RC activity was related to the formation of Cu-containing BChl degradation products that occurred much more in the RC than in LH1. These results suggest that the shift of metal centres in BChl from Mg to Cu can occur in vivo in the RCs of R. rubrum under environmentally realistic Cu concentrations, leading to a strong inhibition of the function of these RCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbabio.2019.06.004DOI Listing

Publication Analysis

Top Keywords

photosynthetic apparatus
8
rhodospirillum rubrum
8
strong inhibition
8
mechanisms sublethal
4
sublethal copper
4
copper toxicity
4
toxicity damage
4
photosynthetic
4
damage photosynthetic
4
apparatus rhodospirillum
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!