Staphylococcus aureus extracellular vesicles (EVs) deliver effector molecules to host cells and induce host cell pathology. This study investigated the disruption of S. aureus EVs by thymol along with its inhibitory effects on the cytotoxicity and inflammatory responses induced by EVs derived from two different S. aureus strains in cultured keratinocytes. Membrane disruption of the S. aureus EVs treated with thymol was determined using transmission electron microscopy. Human keratinocyte HaCaT cells were incubated with either intact or thymol-treated S. aureus EVs and then analyzed for cytotoxicity and pro-inflammatory cytokine gene expression. Thymol inhibited the growth of S. aureus strains and disrupted the membranes of the S. aureus EVs. The cytotoxicity and the expression levels of the pro-inflammatory cytokine genes towards HaCaT cells differed between the EVs derived from two S. aureus strains. Thymol-treated S. aureus EVs inhibited the cytotoxicity and the expression of the pro-inflammatory cytokine genes when compared to intact S. aureus EVs. Thymol-treated S. aureus EVs delivered lesser amounts of the EV component to host cells than intact EVs. Our results suggest that the thymol-induced disruption of the S. aureus EVs inhibits the delivery of effector molecules to host cells, resulting in the suppression of cytotoxicity and inflammatory responses in keratinocytes. Thymol may attenuate the host cell pathology induced by an S. aureus infection via both the antimicrobial activity against the bacteria and the disruption of the secreted EVs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2019.103603 | DOI Listing |
STAR Protoc
December 2024
Department of Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Key Laboratory of Multiple Organ Failure (Zhejiang University), Ministry of Education, Hangzhou, Zhejiang 310009, China. Electronic address:
Extracellular vesicles (EVs) play a crucial role in delivering bioactive cargo in infectious diseases. Here, we present a protocol for isolating EVs from alveolar macrophages (AMs) that phagocytose methicillin-resistant Staphylococcus aureus (MRSA) in vitro cell culture models. We describe steps for bacterial preparation; infection of AMs with MRSA; and isolation, purification, and characterization of EVs.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA; Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Gene Therapy Institute, The Ohio State University, Columbus, OH 43210, USA; Infectious Disease Institute, The Ohio State University, Columbus, OH 43210, USA; Biophysics Program, The Ohio State University, Columbus, OH 43210, USA; Department of Surgery, The Ohio State University, Columbus, OH 43210, USA. Electronic address:
Adv Sci (Weinh)
December 2024
Key Laboratory of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
Electrodynamic therapy (EDT) is a promising alternative approach for antibacterial therapy, as reactive oxygen species (ROS) are produced efficiently in response to an electric field without relying on endogenous HO and O. However, the inherent toxicity of metallic catalysts and numerous bacterial toxins during the therapeutic process still hinder its development. Herein, biomimetic metal-organic (MOF@EV) nanosponges composed of ginger-derived extracellular vesicles (EVs), and electrodynamic metal-organic frameworks (MOFs) are developed for the eradication of bacterial infections and the absorption of toxins.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2024
Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, VIC, Australia.
Probiotic extracellular vesicles are biochemically active structures responsible for biological effects elicited by probiotic bacteria. ., which are abundant in the human body (e.
View Article and Find Full Text PDFJ Nanobiotechnology
September 2024
Department of Chemistry, Hanyang University, Seoul, 04763, Republic of Korea.
Background: Bacterial extracellular vesicles (EVs) are pivotal mediators of intercellular communication and influence host cell biology, thereby contributing to the pathogenesis of infections. Despite their significance, the precise effects of bacterial EVs on the host cells remain poorly understood. This study aimed to elucidate ultrastructural changes in host cells upon infection with EVs derived from a pathogenic bacterium, Staphylococcus aureus (S.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!