Uptake of nanowires by human lung adenocarcinoma cells.

PLoS One

Division of Solid State Physics, Lund University, Lund, Sweden.

Published: February 2020

Semiconductor nanowires are increasingly used in optoelectronic devices. However, their effects on human health have not been assessed fully. Here, we investigate the effects of gallium phosphide nanowires on human lung adenocarcinoma cells. Four different geometries of nanowires were suspended in the cell culture for 48 hours. We show that cells internalize the nanowires and that the nanowires have no effect on cell proliferation rate, motility, viability and intracellular ROS levels. By blocking specific internalization pathways, we demonstrate that the nanowire uptake is the result of a combination of processes, requiring dynamin and actin polymerization, which suggests an internalization through macropinocytosis and phagocytosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6588221PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0218122PLOS

Publication Analysis

Top Keywords

nanowires human
8
human lung
8
lung adenocarcinoma
8
adenocarcinoma cells
8
nanowires
5
uptake nanowires
4
cells semiconductor
4
semiconductor nanowires
4
nanowires increasingly
4
increasingly optoelectronic
4

Similar Publications

Self-supported ultrathin PtRuMoCoNi high-entropy alloy nanowires (HEANWs) were synthesized by a one-pot co-reduction method, whose peroxidase (POD)-like activity and catalytic mechanism were elaborated in detail. As expected, the PtRuMoCoNi HEANWs showed excellent POD-like activity. It can quickly catalyze the oxidization of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue TMB through decomposition of HO to superoxide radicals.

View Article and Find Full Text PDF

Low-potential bionic electrochemiluminescence sensing platform based on SnS/CuNWs synergistic promotion for highly selective detection of glycocholic acid.

Anal Chim Acta

January 2025

Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China. Electronic address:

Background: Glycholic acid (GCA) can dynamically reflect the process of liver injury, and can be used for early diagnosis and curative effect evaluation of early hepatitis and cirrhosis. The highly sensitive detection of liver injury markers is conducive to a more accurate and effective auxiliary diagnosis of liver diseases. In addition, the low trigger potential helps to avoid more chemical interference and improve the detection sensitivity.

View Article and Find Full Text PDF

Construction and high-throughput screening of gradient nanowire coatings on titanium surface towards ameliorated osseointegration.

Mater Today Bio

February 2025

Shanxi Key Laboratory of Biomedical Metal Materials, College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.

Surface nano-modification has emerged as an effective strategy to enhance osseointegration of titanium (Ti) implants. Despite its promise, rational optimization of surface nanomorphology for ameliorated osseointegration remains a significant challenge. Our research pioneering developed a one-step alkali etching technique to produce a gradient nanowire coating with continuously varied dimensions on Ti surfaces, which was subsequently served as a versatile platform for high-throughput screening of optimal dimensions to enhance osseointegration.

View Article and Find Full Text PDF

In this work, the sensing ability and the underlying reaction pathways of HS adsorption on two nanomaterial systems, pristine zinc oxide (ZnO) nanowires (NWs) and gold functionalized zinc oxide nanowires (Au@ZnO NWs), were explored in a side-by-side comparison of optical and electrical gas sensing. The properties of optical sensing were analyzed by photoluminescence intensity-over-time measurements (-) of as-grown ZnO NW samples, and the electrical gas-sensing properties were analyzed by current-over-time measurements (-) of ZnO NW chemically sensitive field-effect transistor (ChemFET) structures with a gas-sensitive open gate. The ZnO NWs were grown by high-temperature chemical vapor deposition (CVD) and thereafter surface-functionalized with a thin Au nanoparticle layer by magnetron sputtering.

View Article and Find Full Text PDF

Silver nanowire/gold nanosphere binary plasma-assembled membranes for sensitive SERS detection of homocysteine.

Mikrochim Acta

December 2024

School of Materials and Chemical Engineering, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, Fujian, 350108, China.

Silver nanowire (Ag NW)/gold nanosphere (Au NS) binary plasma films were prepared using plasma coupling between Ag NWs and Au NSs. The plasma films formed by combining these two noble metals showed better sensitivity for SERS detection with a minimum detection concentration of 10 M for R6G compared to pure Ag NWs or Au NSs. After rational optimisation of the substrate preparation process, the substrate showed good homogeneity, reproducibility and stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!