Similar Publications

g-CN modified flower-like CuCoO array on nickel foam without binder for high-performance supercapacitors.

RSC Adv

January 2025

School of Physics and Electronic Engineering, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University Taiyuan 030006 China

This study investigates the impact of integrating g-CN into CuCoO electrodes on electrochemical performance working as binder-free electrodes. Flower-like CuCoO nanostructures on nickel foam are decorated with few-layer g-CN using a secondary hydrothermal process. The hierarchical g-CN/CuCoO nanoflower electrode demonstrates a specific capacity of 247.

View Article and Find Full Text PDF

Ultrasensitive detection of methylene blue by surface-enhanced Raman scattering (SERS) with Ag nanoparticle-decorated magnetic CoNi layered double hydroxides.

Anal Methods

January 2025

Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.

The unreasonable use of organic dye leads to excessive residues in environmental water, which seriously threatens human health and the natural environment. In this paper, a spherical flower-like magnetic FeO@CoNi layered double hydroxide@silver nanoparticle (FeO@CoNi LDH@Ag NPs) SERS substrate was successfully fabricated electrostatic self-assembly and applied for the sensitive detection of methylene blue (MB) in environmental water. The rapid concentration and separation of the SERS substrate from the water sample could be achieved using an external magnet.

View Article and Find Full Text PDF

Nanozymes, constituting of inorganic nanomaterials, are the sustainable and cost-effective alternatives of the naturally abundant enzymes. For more than a decade, nanozymes have shown astonishingly enhanced enzymatic activity as compared to its naturally occurring counterpart and emerged as a potential platform in biomedical science. The current study reports a novel flower shaped gold-iron oxide nanocomposite prepared via a facile and green solution phase redox mediated synthesis.

View Article and Find Full Text PDF

Carboxylated cellulose-derived carbon mediated flower-like bismuth oxyhalides for efficient Cr(VI) reduction under visible light.

J Colloid Interface Sci

January 2025

Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China. Electronic address:

Exquisitely tailoring the morphologies of photocatalysts could achieve high activities. In this study, the morphological transformation of bismuth oxyhalide (BiOX, X = Br, I and Cl) from disordered lamellae to regular flowers was facilely achieved via the use of carboxylated cellulose-derived carbon (CDC). The sphere-like structure and abundant surface functional groups of CDC induce the formation of such flower-like morphologies of BiOX/CDC, and this morphology results in a pronounced increase in surface area (e.

View Article and Find Full Text PDF
Article Synopsis
  • Ethanol is favored over methanol for fuel cells due to its higher energy density and lower toxicity, but finding affordable catalysts for ethanol oxidation is challenging.
  • Transition metal-based catalysts, especially nickel-based nanomaterials, are promising for enhancing the performance of alkaline direct ethanol fuel cells.
  • The study shows that a nanocomposite made of nickel oxide and carbon nanotubes, decorated with silver, significantly improves electrocatalytic activity, with the Ag 25%/NiO/CNT variant achieving a remarkable increase in ethanol conversion and energy efficiency.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!