This paper describes the structures created by assembling functionalised entangled polymers and the effect these have on the rheology of the material. A polybutadiene (PBd) linear polymer precursor of sufficient molecular weight to be entangled is used. This is end functionalised with the self-associating group 2-ureido-4pyrimidinone (UPy). Interestingly, despite the relatively high molecular weight of the precursor diluting the UPy concentration, the effect on the material's properties is significant. To characterise the assembled microstructure we present linear rheology, extensional non-linear rheology and small angle X-ray scattering (SAXS). The linear rheology shows that the functionalised PBd assembles into large macro-structures where the terminal relaxation time is up to seven orders of magnitude larger than the precursor. The non-linear rheology shows strain-hardening over a broad range of strain-rates. We then show by both SAXS and modelling of the extensional data that there must exist clusters of UPy associations and hence assembled polymers with branched architecture. By modelling the supra-molecular structure as an effective linear polymer, we show that this would be insufficient in predicting the strain-hardening behaviour at lower extension-rates. Therefore, in this flow regime the strain-hardening is likely to be caused by branching. This is backed up by SAXS measurements which show that UPy clusters larger than pair-pair groups exist.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c8sm02580k | DOI Listing |
ACS Phys Chem Au
January 2025
Department of Fibre and Polymer Technology, Division of Coating Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden.
In an effort to improve safety and cycling stability of liquid electrolytes, the use of dicarbonates has been explored. In this study, four dicarbonate structures with varying end groups and spacers are investigated. The effect of these structural differences on the physical and ion transport properties is elucidated, showing that the end group has a significant influence on ion transport.
View Article and Find Full Text PDFAnalyst
January 2025
College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
A novel electrochemical microsensor was constructed on a traditional acupuncture needle (AN) and used to monitor a biomarker of the SARS-CoV-2-N protein. The reversible interaction of the borate bond between the -diol in this glycoprotein and the phenylboronic acid in 4-mercaptophenylboronic acid (4-MPBA) was accomplished. This interaction was applied to anchor the SARS-CoV-2-N protein onto 4-MPBA, which was covalently self-assemblied onto electrodeposited AuNPs by the S-Au bond.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Nanoscale Biophotonics Laboratory, University of Galway, University Road, Galway H91 TK33 Ireland. Electronic address:
Poly-N-isopropylacrylamide (PNIPAm), a thermorresponsive polymer, highly soluble in water below its lower critical solution temperature (LCST), is widely used in biomedical applications like drug delivery. Being able to measure PNIPAm size and aggregation state in solution quickly, inexpensively, and accurately below the LCST is critical when stoichiometric particle or molecular ratios are required. Dynamic light scattering (DLS) is probably the most widely available, and inexpensive nanoparticle sizing technique, but there are limitations with respect to sample polydispersity.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Physics, Khalifa University of Science and Technology, 127788, Abu Dhabi, United Arab Emirates.
In this study, biopolymer composites based on chitosan (CS) with enhanced optical properties were functionalized using Manganese metal complexes and black tea solution dyes. The results indicate that CS with Mn-complexes can produce polymer hybrids with high absorption, high refractive index and controlled optical band gaps, with a significant reduction from 6.24 eV to 1.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
Vibration sensors are integral to a multitude of engineering applications, yet the development of low-cost, easily assembled devices remains a formidable challenge. This study presents a highly sensitive flexible vibration sensor, based on the piezoresistive effect, tailored for the detection of high-dynamic-range vibrations and accelerations. The sensor's design incorporates a polylactic acid (PLA) housing with cavities and spherical recesses, a polydimethylsiloxane (PDMS) membrane, and electrodes that are positioned above.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!