Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The apoptotic death of cells is accompanied by the exposure of "eat-me" signals that serve to prevent necrotic degradation of apoptotic cells, and thereby prevent inflammation, promote resolution of immune responses, and stimulate tissue repair. These "eat-me" signals include the exposure of phosphatidylserine (PS) on the outer plasma membrane during the early stages of apoptosis as well as on the surface of apoptotic bodies, plasma membrane vesicles that are shed during the later stages of cell death. In our recent publication (PLoS Biol. 15(6):e2002711), we describe similar 'eat-me' and 'find-me' signals present during necroptosis, challenging some of our common assumptions about regulated forms of lytic death.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6551822 | PMC |
http://dx.doi.org/10.15698/cst2017.11.112 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!