Follicular Helper T Cell Derived Exosomes Promote B Cell Proliferation and Differentiation in Antibody-Mediated Rejection after Renal Transplantation.

Biomed Res Int

Beijing Key Laboratory of Immunology Regulatory and Organ Transplantation, Basic Research Lab of Organ Transplant Institute, The Eighth Medical Center of Chinese PLA General Hospital, Beijing 100091, China.

Published: December 2019

Follicular helper T cells (Tfh cells) are closely related to the occurrence and development of antibody-mediated rejection (AMR) after renal transplantation. Exosomes play a key role in the rejection after organ transplantation. However, whether Tfh-derived exosomes are involved in AMR has not been reported. We collected peripheral blood from 42 kidney transplant patients and found no significant differences in CD4+CXCR5+ and CD4+CXCR5+CXCR3+CCR6-exosomes between AMR and non-AMR groups, whereas the proportion of CD4+CXCR5+CXCR3-exosomes was significantly higher in AMR group than that in non-AMR group; CTLA-4 expression of CD4+CXCR5+exosomes was significantly lower in AMR group than that in non-AMR group. HLA-G expression was not significantly different between two groups. We further separated CD4+CXCR5+cells from patients by magnetic beads. Coculture experiments showed that Tfh cell-derived exosomes in AMR patients significantly promoted B cell proliferation and differentiation, compared with non-AMR group, the percentage of B cells and plasma cells increased by 87.52% and 110.2%, respectively. In conclusion, our study found that Tfh cell-derived exosomes could promote the proliferation and differentiation of B cells and they may play an important role in the development of AMR after renal transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541933PMC
http://dx.doi.org/10.1155/2019/6387924DOI Listing

Publication Analysis

Top Keywords

proliferation differentiation
12
renal transplantation
12
non-amr group
12
follicular helper
8
exosomes promote
8
cell proliferation
8
antibody-mediated rejection
8
amr renal
8
amr group
8
group non-amr
8

Similar Publications

Oncolytic alphavirus-induced extracellular vesicles counteract the immunosuppressive effect of melanoma-derived extracellular vesicles.

Sci Rep

January 2025

Center for Translational Research in Oncology (LIM/24), Instituto do Cancer do Estado de Sao Paulo, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, São Paulo, CEP 01246-000, Brazil.

Extracellular vesicles (EVs)-mediated communication by cancer cells contributes towards the pro-tumoral reprogramming of the tumor microenvironment. Viral infection has been observed to alter the biogenesis and cargo of EVs secreted from host cells in the context of infectious biology. However, the impact of oncolytic viruses on the cargo and function of EVs released by cancer cells remains unknown.

View Article and Find Full Text PDF

This study aimed to investigate the regulation and underlying mechanism of Cathepsin K (CTSK) in bone-invasive pituitary adenomas (BIPAs). A total of 1437 patients with pituitary adenomas were included and followed up. RNA sequencing, immunohistochemistry, and qRT-PCR were used to analyze CTSK expression.

View Article and Find Full Text PDF

LncRNA-MEG3/miR-93-5p/SMAD7 axis mediates proliferative and inflammatory phenotypes of fibroblast-like synoviocytes in rheumatoid arthritis.

Int J Biol Macromol

January 2025

Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei 230022, China. Electronic address:

Synovial hyperplasia, inflammation and immune cell infiltration are the central pathological basis of rheumatoid arthritis (RA). Nonetheless, the cellular, molecular and immunological mechanisms of RA remain poorly understood. An integrated analysis of single-cell RNA (scRNA) and bulk RNA sequencing datasets‌ aimed to unravel the cellular landscape, differentiation trajectory, transcriptome signature, and immunoinfiltration feature of RA synovium.

View Article and Find Full Text PDF

Decorin-mediated dermal papilla cell-derived exosomes regulate hair follicle growth and development through miR-129-2-3p/SMAD3/TGF-β axis.

Int J Biol Macromol

January 2025

College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou, Jiangsu 225009, China. Electronic address:

Decorin (DCN) is a member of the small leucine-rich proteoglycan family within the extracellular matrix, playing a role in the growth and development of hair follicle (HF). Exosomes serve as significant mediators of intercellular communication and are involved in the cyclic regeneration of HF. Exosomes derived from dermal papilla cells (DPC-Exos) are essential for the cycling and regrowth of HF.

View Article and Find Full Text PDF

The oncoprotein c-Myc is expressed in all breast cancer subtypes, but its expression is higher in triple-negative breast cancer (TNBC) compared to estrogen receptor (ER+), progesterone receptor (PR+), or human epidermal growth factor receptor 2 (HER2+) positive tumors. The c-Myc gene is crucial for tumor progression and therapy resistance, impacting cell proliferation, differentiation, senescence, angiogenesis, immune evasion, metabolism, invasion, autophagy, apoptosis, chromosomal instability, and protein biosynthesis. Targeting c-Myc has emerged as a potential therapeutic strategy for TNBC, a highly aggressive and deadly breast cancer form.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!