The aim of the present study was to investigate growth factors release kinetics for the combination of fresh platelet-rich fibrin (F-PRF) and lyophilized PRF (L-PRF) with different ratios to promote bone tissue regeneration. First, we quantified the level of transforming growth factor-1 (TGF-1), vascular endothelial growth factor (VEGF), and platelet-derived growth factor-AB (PDGF-AB) and analyzed their release kinetics from F-PRF, L-PRF, and the fresh/lyophilized PRF in different weight ratios (F:L=1:1, 1:3, 1:5). The second experimental phase was to investigate the proliferation and differentiation of bone mesenchymal stem cells (BMSCs) as a functional response to the factors released. To further test the osteogenic potential , different scaffolds (F-PRF, or L-PRF, or F:L=1:1) were implanted in rabbit cranial bone defects. There was a statistically significant increase in proliferation and differentiation of BMSCs when the culture medium contained different PRF exudates collected at day 14 compared with the negative control group. The results showed that the new bone formation in the fresh/lyophilized PRF (1:1) was much more than that of other groups in defects at both 6 and 12 weeks. Our data suggested growth factor concentration and release kinetics as a consequence of fresh and lyophilized PRF combination, which is an effective way for promoting bone regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6541981PMC
http://dx.doi.org/10.1155/2019/4923767DOI Listing

Publication Analysis

Top Keywords

release kinetics
12
combination fresh
8
fresh lyophilized
8
platelet-rich fibrin
8
bone tissue
8
tissue regeneration
8
lyophilized prf
8
growth factor
8
f-prf l-prf
8
fresh/lyophilized prf
8

Similar Publications

While CNS microglia have well-established roles in synapse pruning during neurodevelopment, only a few studies have identified roles for microglia in synapse formation. These studies focused on the cortex and primary sensory circuits during restricted developmental time periods, leaving substantial gaps in our understanding of the early developmental functions of microglia. Here we investigated how the absence of microglia impacts synaptic development in the nucleus accumbens (NAc), a region critical for emotional regulation and motivated behaviors and where dysfunction is implicated in psychiatric disorders that arise early in life.

View Article and Find Full Text PDF

The wide application of zeolite Y in petrochemical industry is well known as one of the milestones in zeolite chemistry and heterogeneous catalysis. However, the traditional organic-free synthesis typically produces (hydro)thermally unstable zeolite Y with Si/Al atomic ratio (SAR) less than 2.5.

View Article and Find Full Text PDF

The purpose of this study is to solve the problem of ammonia (NH) release when modified magnesium slag (MMS) is used as coal mine backfill cementitious material, and to explore its chemical mechanism and put forward effective solutions. Uniaxial compressive strengths (UCS) hydration kinetics, scanning electron microscope (SEM), and thermogravimetric analysis-derivative thermogravimetry (TG-DTG), X-ray diffractometer (XRD) and other testing methods were used to study the evolution of the properties of MMS-based backfill material, which provided a scientific basis for the safe utilization of MMS. First, the chemical mechanism underlying the release of NH from MMS was identified, and it was confirmed that MgN and LiN are the main nitrogen sources.

View Article and Find Full Text PDF

Peptide-Based Complex Coacervates Stabilized by Cation-π Interactions for Cell Engineering.

J Am Chem Soc

January 2025

Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.

Complex coacervation is a form of liquid-liquid phase separation, whereby two types of macromolecules, usually bearing opposite net charges, self-assemble into dense microdroplets driven by weak molecular interactions. Peptide-based coacervates have recently emerged as promising carriers to deliver large macromolecules (nucleic acids, proteins and complex thereof) inside cells. Thus, it is essential to understand their assembly/disassembly mechanisms at the molecular level in order to tune the thermodynamics of coacervates formation and the kinetics of cargo release upon entering the cell.

View Article and Find Full Text PDF

This study thoroughly investigated the adsorption of Congo Red (CR) dye onto various microplastics (MPs), including high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP) and polyethylene terephthalate (PET). Initial adsorption capacities (q) revealed that HDPE had the highest value (21.90 mg/g), followed by PVC (4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!