A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Instrumental variable approach to estimating the scalar-on-function regression model with measurement error with application to energy expenditure assessment in childhood obesity. | LitMetric

Wearable device technology allows continuous monitoring of biological markers and thereby enables study of time-dependent relationships. For example, in this paper, we are interested in the impact of daily energy expenditure over a period of time on subsequent progression toward obesity among children. Data from these devices appear as either sparsely or densely observed functional data and methods of functional regression are often used for their statistical analyses. We study the scalar-on-function regression model with imprecisely measured values of the predictor function. In this setting, we have a scalar-valued response and a function-valued covariate that are both collected at a single time period. We propose a generalized method of moments-based approach for estimation, while an instrumental variable belonging in the same time space as the imprecisely measured covariate is used for model identification. Additionally, no distributional assumptions regarding the measurement errors are assumed, while complex covariance structures are allowed for the measurement errors in the implementation of our proposed methods. We demonstrate that our proposed estimator is L consistent and enjoys the optimal rate of convergence for univariate nonparametric functions. In a simulation study, we illustrate that ignoring measurement error leads to biased estimations of the functional coefficient. The simulation studies also confirm our ability to consistently estimate the function-valued coefficient when compared to approaches that ignore potential measurement errors. Our proposed methods are applied to our motivating example to assess the impact of baseline levels of energy expenditure on body mass index among elementary school-aged children.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684443PMC
http://dx.doi.org/10.1002/sim.8179DOI Listing

Publication Analysis

Top Keywords

energy expenditure
12
measurement errors
12
instrumental variable
8
scalar-on-function regression
8
regression model
8
measurement error
8
imprecisely measured
8
proposed methods
8
measurement
5
variable approach
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!