Advanced maternal age at birth can have pronounced consequences for offspring health, survival and reproduction. If carried over to the next generation, such fitness effects could have important implications for population dynamics and the evolution of ageing, but these remain poorly understood. While many laboratory studies have investigated maternal age effects, relatively few studies have been conducted in natural populations, and they usually only present a "snapshot" of an offspring's lifetime. In the present study, we focus on how maternal age influences offspring life-history trajectories and performance in a long-lived mammal. We use a multigenerational demographic dataset of semi-captive Asian elephants to investigate maternal age effects on several offspring life-history traits: condition, reproductive success and overall survival. We show that offspring born to older mothers display reduced overall survival but higher reproductive success, and reduced survival of their own progeny. Our results show evidence of a persistent effect of maternal age on fitness across generations in a long-lived mammal. By highlighting transgenerational effects on the fitness of the next generation associated with maternal age, the present study helps increase our understanding of factors contributing to individual variation in ageing rates and fitness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1365-2656.13049 | DOI Listing |
J Integr Neurosci
January 2025
Department of Child Health, Qingdao Huangdao District Central Hospital, 266555 Qingdao, Shandong, China.
Background: Autism spectrum disorder (ASD) has been reported to confer an increased risk of natural premature death. Telomere erosion caused by oxidative stress is a common consequence in age-related diseases. However, whether telomere length (TL) and oxidative indicators are significantly changed in ASD patients compared with controls remains controversial.
View Article and Find Full Text PDFAnn Clin Transl Neurol
January 2025
NEUROFARBA Department, Neurosciences Section, University of Florence, Florence, Italy.
Objectives: We aim to investigate cognitive phenotype distribution and MRI correlates across pediatric-, elderly-, and adult-onset MS patients as a function of disease duration.
Methods: In this cross-sectional study, we enrolled 1262 MS patients and 238 healthy controls, with neurological and cognitive assessments. A subset of 222 MS patients and 92 controls underwent 3T-MRI scan for brain atrophy and lesion analysis.
Nutrients
January 2025
Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan.
Background/objectives: The DNA methylation of neonatal cord blood can be used to accurately estimate gestational age. This is known as epigenetic gestational age. The greater the difference between epigenetic and chronological gestational age, the greater the association with an inappropriate perinatal fetal environment and development.
View Article and Find Full Text PDFNutrients
January 2025
Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain.
Maternal nutrition during pregnancy plays a pivotal role in influencing both maternal and fetal health, impacting neonatal anthropometric outcomes and long-term disease susceptibility. An advanced maternal age (AMA ≥ 35 years) has been linked to increased risks of obstetric complications and adverse neonatal outcomes, yet its specific nutritional profile remains underexplored. : This study aimed to evaluate the nutrient and polyphenol intakes of women at an AMA compared to those of a younger control group and to investigate associations with neonatal anthropometric measures.
View Article and Find Full Text PDFNutrients
January 2025
Department of Psychiatry and Behavioral Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
Background/objectives: While studies in rat pups suggest that early zinc exposure is critical for optimal brain structure and function, associations of prenatal zinc intake with measures of brain development in infants are unknown. This study aimed to assess the associations of maternal zinc intake during pregnancy with MRI measures of brain tissue microstructure and neurodevelopmental outcomes, as well as to determine whether MRI measures of the brain mediated the relationship between maternal zinc intake and neurodevelopmental indices.
Methods: Forty-one adolescent mothers were recruited for a longitudinal study during pregnancy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!