Revealing a Dual Role of Ganglioside Lipids in the Aggregation of Membrane-Associated Islet Amyloid Polypeptide.

J Membr Biol

Interdisciplinary Nanoscience Center (iNANO) and Department of Chemistry, Aarhus University, Langelandsgade 140, 8000, Aarhus, Denmark.

Published: October 2019

Amyloid formation of the human islet amyloid polypeptide (hIAPP) correlates with a loss of insulin-producing beta cells in patients with type II diabetes mellitus. In this study, we investigated the binding of hIAPP to bilayers consisting of ganglioside lipids and dioleoylphosphatidylcholine (DOPC), which is a physiologically relevant lipid species for pancreatic beta cell-associated aggregation. The membrane interactions are studied computationally using a combination of coarse-grained, umbrella sampling, and atomistic molecular dynamics simulations. Herein, we demonstrate how the hIAPP peptides accumulate in the areas with a high content of ganglioside lipids. We have characterized two distinct binding modes of hIAPP on ganglioside-rich membranes, with both binding modes formed due to electrostatic interaction between the cationic peptides and the anionic ganglioside headgroup. We observed that binding in the ganglioside headgroup region induced conformational changes of the peptide towards an aggregation prone conformation, rich in β-strands. In contrast, the binding of hIAPP near the ganglioside-enriched areas mobilizes the peptide, preventing it from conformational changes and potentially shields it from interactions with other peptides. This suggests a dual role of ganglioside lipids, affecting the aggregation of hIAPP by either accelerating or inhibiting amyloid formation depending on the membrane binding and the ganglioside concentration.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00232-019-00074-5DOI Listing

Publication Analysis

Top Keywords

ganglioside lipids
16
dual role
8
role ganglioside
8
lipids aggregation
8
islet amyloid
8
amyloid polypeptide
8
amyloid formation
8
binding hiapp
8
binding modes
8
ganglioside headgroup
8

Similar Publications

Introduction: HIV-1 exploits dendritic cells (DCs) to spread throughout the body via specific recognition of gangliosides present on the viral envelope by the CD169/Siglec-1 membrane receptor. This interaction triggers the internalization of HIV-1 within a structure known as the sac-like compartment. While the mechanism underlying sac-like compartment formation remains elusive, prior research indicates that the process is clathrin-independent and cell membrane cholesterol-dependent and involves transient disruption of cortical actin.

View Article and Find Full Text PDF

Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles).

View Article and Find Full Text PDF

Lipid role in synapse and nuclear envelope-associated endocytic pathways in Tauopathy.

Adv Protein Chem Struct Biol

January 2025

Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.

Lipids play an essential role in synaptic function, significantly impacting synaptic physiology through their dynamic nature and signaling capabilities. Membrane lipids, including cholesterol, phospholipids, and gangliosides, are crucial for synaptic organization and function. They act as structural integrators and signaling molecules, guiding vesicle intracellular movement and regulating enzyme activity to support neuronal activity.

View Article and Find Full Text PDF

Unlabelled: Streptolysin O (SLO) is a virulence determinant of group A (), the agent of streptococcal sore throat and severe invasive infections. SLO is a member of a family of bacterial pore-forming toxins known as cholesterol-dependent cytolysins, which require cell membrane cholesterol for pore formation. While cholesterol is essential for cytolytic activity, accumulating data suggest that cell surface glycans may also participate in the binding of SLO and other cholesterol-dependent cytolysins to host cells.

View Article and Find Full Text PDF

Ganglioside-incorporating lipid nanoparticles as a polyethylene glycol-free mRNA delivery platform.

Biomater Sci

January 2025

Department of Bio and Brain Engineering, and KAIST Institute for Health Science and Technology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Incorporation of polyethylene glycol (PEG) is widely used in lipid nanoparticle (LNP) formulation in order to achieve adequate stability due to its stealth properties. However, studies have detected the presence of anti-PEG neutralizing antibodies after PEGylated LNP treatment, which are associated with anaphylaxis, accelerated LNP clearance and premature release of cargo. Here, we report the development of LNPs incorporating ganglioside, a naturally occurring stealth lipid, as a PEG-free alternative.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!