This study focused on analyzing the effects of inclusion of modern hybrid rye to corn-wheat diet on mechanical properties of bones and tendons. A total of 224 broiler chickens were fed a diet without rye inclusion or a diet containing 15% of hybrid rye cv. Brasetto. The diets were either unsupplemented or supplemented with xylanase (minimum activity 1000 FXU/g, dose 200 mg/kg of feed). Each dietary group consisted of 56 birds. On day 42, selected chickens (n = 7 from each group) were slaughtered. Tibia were analyzed for mineralization, geometry, and biomechanical characteristics of bone mid-diaphysis. The mechanical properties of digital flexor III tendon were also assessed. Bone mineral density and bone ash percentage did not differ when both diets were given without xylanase. Enzyme supplementation increased bone mineral density (P < 0.01) in both dietary groups, whereas bone ash percentage (P < 0.01) increased only for corn-wheat diet. Rye inclusion had no effect on bone mid-shaft geometrical traits related to tibia weight-bearing capacity (cross-sectional area, cortical index, and mean relative wall thickness). Performed bending test showed no effect of hybrid rye inclusion on bone mechanical endurance. When xylanase was supplemented, bone length (P < 0.01) and weight (P < 0.05) decreased, whereas yield load (P < 0.01), stiffness (P < 0.05), Young modulus (P < 0.05), elastics stress (P < 0.01), and ultimate stress (P < 0.01) increased, irrespective of rye presence. The tendon tensile strain test showed that in corn-wheat diet enzyme supplementation positively influenced rupture force (P < 0.05) and tendon stiffness (P < 0.01). Xylanase supplementation increased the value of energy required to tendon rupture, irrespective of rye inclusion (P < 0.05). Study showed that modern hybrid rye varieties can be introduced to corn-wheat diets of broiler chickens in the aspect of animal welfare related to the development and homeostasis of musculoskeletal system, irrespective of xylanase supplementation. The enzyme addition positively affected biomechanical properties of bones and tendons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3382/ps/pez323 | DOI Listing |
Plants (Basel)
December 2024
Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan.
Successful pollination and fertilization are crucial for grain setting in cereals. Wheat is an allohexaploid autogamous species. Due to its evolutionary history, the genetic diversity of current bread wheat () cultivars is limited.
View Article and Find Full Text PDFJ Genet Genomics
January 2025
State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:
Chromosomal rearrangements (CRs) often cause phenotypic variations. Although several major rearrangements have been identified in Triticeae, a comprehensive study of the order, timing, and breakpoints of CRs has not been conducted. Here, we reconstruct high-quality ancestral genomes for the most recent common ancestor (MRCA) of the Triticeae, and the MRCA of the wheat lineage (Triticum and Aegilops).
View Article and Find Full Text PDFFront Plant Sci
December 2024
State key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
Introduction: Rye ( L.) played a very important role in wheat genetic improvement and forage production worldwide. However, since rye is a kind of cross-pollinated plant, high levels of genetic heterozygosity and heterogeneity existed in the genome.
View Article and Find Full Text PDFFront Plant Sci
November 2024
Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
Introduction: Emerging new races of leaf rust ( Eriks) are threatening global wheat ( L.) production. Identifying additional resistance genes from all available gene pools is crucial to expanding wheat resistance to these virulent leaf rust races.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, 197022 St. Petersburg, Russia.
× is a presumed hybrid of and . This article investigates the hybrid origin and genome composition of this species. These plants are sterile, do not undergo pollination, and do not produce seeds; occasionally, underdeveloped stamens containing abortive pollen grains form in individual spikelets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!