A decrease in adult hippocampal neurogenesis has been linked to age-related cognitive impairment. However, the mechanisms involved in this age-related reduction remain elusive. Glucocorticoid hormones (GC) are important regulators of neural stem/precursor cells (NSPC) proliferation. GC are released from the adrenal glands in ultradian secretory pulses that generate characteristic circadian oscillations. Here, we investigated the hypothesis that GC oscillations prevent NSPC activation and preserve a quiescent NSPC pool in the aging hippocampus. We found that hippocampal NSPC populations lacking expression of the glucocorticoid receptor (GR) decayed exponentially with age, while GR-positive populations decayed linearly and predominated in the hippocampus from middle age onwards. Importantly, GC oscillations controlled NSPC activation and GR knockdown reactivated NSPC proliferation in aged mice. When modeled in primary hippocampal NSPC cultures, GC oscillations control cell cycle progression and induce specific genome-wide DNA methylation profiles. GC oscillations induced lasting changes in the methylation state of a group of gene promoters associated with cell cycle regulation and the canonical Wnt signaling pathway. Finally, in a mouse model of accelerated aging, we show that disruption of GC oscillations induces lasting changes in dendritic complexity, spine numbers and morphology of newborn granule neurons. Together, these results indicate that GC oscillations preserve a population of GR-expressing NSPC during aging, preventing their activation possibly by epigenetic programming through methylation of specific gene promoters. Our observations suggest a novel mechanism mediated by GC that controls NSPC proliferation and preserves a dormant NSPC pool, possibly contributing to a neuroplasticity reserve in the aging brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7303016 | PMC |
http://dx.doi.org/10.1038/s41380-019-0440-2 | DOI Listing |
Cells
January 2025
Department of Neurosciences, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada.
The adult human spinal cord harbors diverse populations of neural stem/progenitor cells (NSPCs) essential for neuroregeneration and central nervous system repair. While induced pluripotent stem cell (iPSC)-derived NSPCs offer significant therapeutic potential, understanding their molecular and functional alignment with bona fide spinal cord NSPCs is crucial for developing autologous cell therapies that enhance spinal cord regeneration and minimize immune rejection. In this study, we present the first direct transcriptomic and functional comparison of syngeneic adult human NSPC populations, including bona fide spinal cord NSPCs and iPSC-derived NSPCs regionalized to the spinal cord (iPSC-SC) and forebrain (iPSC-Br).
View Article and Find Full Text PDFNeurotoxicology
December 2024
Neuroprotection Research Laboratory, Departments of Radiology and Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Department of Human Anatomy, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; Malaysian Research Institute on Ageing (MyAgeing™), Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia. Electronic address:
JAK-STAT signaling cascade has emerged as an ideal target for the treatment of myeloproliferative diseases, autoimmune diseases, and neurological disorders. Ruxolitinib (Rux), is an orally bioavailable, potent and selective Janus-associated kinase (JAK) inhibitor, proven to be effective to target activated JAK-STAT pathway in the diseases previously described. Unfortunately, limited studies have investigated the potential cytotoxic profile of Rux on other cell populations within the heterogenous CNS microenvironment.
View Article and Find Full Text PDFTheranostics
August 2024
Institute of Stem Cell and Regenerative Medicine, Women and Children's Hospital of Xiamen University, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, State Key Laboratory of Cellular Stress Biology, School of Medicine, Xiamen University, Xiamen, Fujian 361000, China.
Adult neurogenesis in the subventricular zone (SVZ) is essential for maintaining neural homeostasis, and its dysregulation contributes to anosmia and delayed tissue healing in neurological disorders, such as Parkinson's disease (PD). Despite intricate regulatory networks identified in SVZ neurogenesis, the molecular mechanisms dynamically maintaining neural stem/progenitor cells (NSPCs) in response to physiological and pathological stimuli remain incompletely elucidated. We generated an RNA binding motif protein 24 (Rbm24) knockout model to investigate its impact on adult neurogenesis in the SVZ, employing immunofluorescence, immunoblot, electrophysiology, RNA-sequencing, and experiments.
View Article and Find Full Text PDFActa Histochem Cytochem
June 2024
Laboratory for Molecular Neurobiology, Faculty of Human Sciences, Waseda University, Saitama, Japan.
Neural stem/progenitor cells (NSPCs) in specific brain regions require precisely regulated metabolite production during critical development periods. Purines-vital components of DNA, RNA, and energy carriers like ATP and GTP-are crucial metabolites in brain development. Purine levels are tightly controlled through two pathways: synthesis and salvage synthesis.
View Article and Find Full Text PDFACS Biomater Sci Eng
May 2024
Department of Cell Morphology and Molecular Neurobiology, Ruhr Universität Bochum, Bochum 44801, Germany.
The central nervous system (CNS) has a limited regenerative capacity because a hostile environment prevents tissue regeneration after damage or injury. Neural stem/progenitor cells (NSPCs) are considered a potential resource for CNS repair, which raises the issue of adequate cultivation and expansion procedures. Cationic charge supports the survival and adhesion of NSPCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!