Detection of the weakest forces in nature is aided by increasingly sensitive measurements of the motion of mechanical oscillators. However, the attainable knowledge of an oscillator's motion is limited by quantum fluctuations that exist even if the oscillator is in its lowest possible energy state. We demonstrate a technique for amplifying coherent displacements of a mechanical oscillator with initial magnitudes well below these zero-point fluctuations. When applying two orthogonal squeezing interactions, one before and one after a small displacement, the displacement is amplified, ideally with no added quantum noise. We implemented this protocol with a trapped-ion mechanical oscillator and determined an increase by a factor of up to 7.3 (±0.3) in sensitivity to small displacements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11566721 | PMC |
http://dx.doi.org/10.1126/science.aaw2884 | DOI Listing |
Hear Res
January 2025
Department of Neuroscience, University of Wisconsin-Madison, WI 53706, USA.
We developed an isolated auditory papilla of the crested gecko to record from the hair cells and explore the origins of frequency tuning. Low-frequency cells displayed electrical tuning, dependent on Ca-activated K channels; high-frequency cells, overlain with sallets, showed a variation in hair bundle stiffness which when combined with sallet mass could provide a mechanical resonance of 1 to 6 kHz. Sinusoidal electrical currents injected extracellularly evoked hair bundle oscillations at twice the stimulation frequency, consistent with fast electromechanical responses from hair bundles of two opposing orientations, as occur in the sallets.
View Article and Find Full Text PDFHeliyon
July 2024
School of Physics, Changchun University of Science and Technology, Changchun, 130022, China.
To analyze the motion laws of a magnetic and elastic coupling system under the influence of various factors, this paper proposes a magnetic coupling pendulum based on spring pieces and magnets-a magnetic-mechanical oscillator. By fixing spring pieces onto two non-magnetic bases and attaching magnets to their upper ends, which repel each other, the potential energy during oscillation is expanded using Fourier series. Subsequently, Lagrange equations are solved to study the effects of the first two terms of potential energy.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Mechanical Engineering, Yazd University, Yazd, Iran.
In this research, the impact of differing densities and viscosities of two dissolving fluids on their mixing efficiency, as well as the effects of various excitation frequencies on the performance of the mixer, have been examined. For this purpose, a two-dimensional microchannel equipped with an oscillating circular cylinder was used, operating within a Strouhal number range of 0.1-0.
View Article and Find Full Text PDFACS Nano
January 2025
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, People's Republic of China.
Moisture-electric generators (MEGs) generate power by adsorbing water from the air. However, their performance at low temperatures is hindered due to icing. In the present work, MEG arrays are developed by laser engraving techniques and a modulated low-temperature hydrogel as the absorbent material.
View Article and Find Full Text PDFNano Lett
January 2025
Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.
Nanostructured high-index dielectrics have shown great promise as low-loss photonic platforms for wavefront control and enhancing optical nonlinearities. However, their potential as optomechanical resonators has remained unexplored. In this work, we investigate the generation and detection of coherent acoustic phonons in individual crystalline gallium phosphide nanodisks on silica in a pump-probe configuration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!