A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

An automated, electronic assessment tool can accurately classify older adult postural stability. | LitMetric

An automated, electronic assessment tool can accurately classify older adult postural stability.

J Biomech

Department of Telemedicine and Virtual Rehabilitation, Burke Medical Research Institute, White Plains, NY, USA; Department of Rehabilitation and Human Performance, Icahn School of Medicine, Mount Sinai, New York, USA. Electronic address:

Published: August 2019

Current methods of balance assessment in the clinical environment are often subjective, time-consuming and lack clinical relevance for non-ambulatory older adults. The objective of this study was to develop a novel method of balance assessment that utilizes data collected using the Microsoft Kinect 2 to create a Berg Balance Scale score, which is completely determined by statistical methods rather than by human evaluators. 74 older adults, both healthy and balance impaired, were recruited for this trial. All participants completed the Berg Balance Scale (BBS) which was scored independently by trained physical therapists. Participants then completed the items of the "Modified Berg Balance Scale" in front of the Microsoft Kinect camera. Kinematic data collected during this measurement was used to train a feed-forward neural network that was used to assign a Berg Balance Scale score. The neural network model estimated the clinician-assigned BBS score to within a median of 0.93 points for the participants in our sample population (range: 0.02-5.69). Using low-cost depth sensing camera technology and a clinical protocol that takes less than 5 min to complete in both ambulatory and non-ambulatory older adults, the method outlined in this manuscript can accurately predict a participant's BBS score and thereby identify whether they are deemed a high fall risk or not. If implemented correctly, this could enable fall prevention services to be deployed in a timely fashion using low-cost, accessible technology, resulting in improved safety of older adults.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2019.06.001DOI Listing

Publication Analysis

Top Keywords

older adults
16
berg balance
16
balance scale
12
balance assessment
8
non-ambulatory older
8
data collected
8
microsoft kinect
8
scale score
8
participants completed
8
neural network
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!