The discovery of coherent laser light in 1960 shifted and expanded the biomedical applications of radiation to the non-ionizing part of the electromagnetic spectrum. As in the case of ionizing radiation, but considering the laser specific features, the effective, safe and ethically acceptable use of biomedical laser technology requires interdisciplinary collaboration between physicists, engineers and physicians. This should extend at the research, preclinical and clinical level, inspiring at this time the dynamic discipline of Medical Physics in new areas. With this work we aim to introduce the interested reader in the need of dosimetry in medical applications of laser radiation, as this field is still unexplored. After some necessary definitions, we give a brief review of the basic biophysical mechanisms of coherent light-matter interactions. The manuscript focuses on biomedical laser applications in diagnosis and therapy (i.e. in Theranostics). From the vast field of laser theranostic applications we have chosen some experimental and theoretical results - examples of quantification of the laser effect, particularly relevant to soft and hard tissue laser ablation, laser induced photodiagnosis and photodynamic therapy of cancer. These topics intend to highlight the important role of Medical Physicists in the optimization of well-established laser based clinical procedures and mainly emerge the necessity of the relevant dosimetry for each application. Finally, we hope that this effort is going to give food for thought and highlight the importance of deep knowledge of the physics behind some everyday medical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejmp.2019.05.016 | DOI Listing |
Nanotechnology
January 2025
Xidian University, Room 120, G building, Southern campus of Xidian University, Xi'an, Shaanxi, 710126, CHINA.
The utilization of dual-working-electrode mode of interdigitated array (IDA) electrodes and other two-electrode systems has revolutionized electrochemical detection by enabling the simultaneous and independent detection of two species, accompanied by the exhibition of unique characteristics. In contrast to conventional dual-potential electrodes, such as the rotating ring disk electrodes (RRDE), IDA electrodes demonstrate analogous yet vastly improved performance, characterized by remarkable collection efficiency and sensitivity. Notably, due to the distinctive microscale structure of IDA electrode, the special "feedback" effect makes IDA a unique signal amplifier.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore.
Photodynamic therapy (PDT) holds promise as a cancer treatment modality due to its potential for enhanced therapy precision and safety. To enhance deep tissue penetration and minimize tissue adsorption and phototoxicity, developing photosensitizers activated by second near-infrared window (NIR-II) light shows significant potential. However, the efficacy of PDT is often impeded by tumor microenvironment hypoxia, primarily caused by irregular tumor vasculature.
View Article and Find Full Text PDFJ Phys Chem A
January 2025
Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States.
We present direct frequency comb cavity ring-down spectroscopy with Vernier filtering as a straightforward approach to sensitive and multiplexed trace gas detection. The high finesse cavity acts both to extend the interaction length with the sample and as a spectral filter, alleviating the need for dispersive elements or an interferometer. In this demonstration, a free running interband cascade laser was used to generate a comb centered at 3.
View Article and Find Full Text PDFFood Addit Contam Part A Chem Anal Control Expo Risk Assess
January 2025
UMR SayFood 0782, Université Paris-Saclay, INRAE, Palaiseau, AgroParisTech, France.
Assessing the contamination of paper and board (P&B) food packaging materials poses significant challenges due to the sensitivity limits of analytical methods and the low precision of sampling processes. This study aims to enhance the understanding of P&B food packaging contamination by investigating the distribution of contaminants at different scales using a combination of chromatographic and spectroscopic techniques. A total of 36 substances were targeted, including phthalates, photoinitiators, and bisphenol A.
View Article and Find Full Text PDFSci Adv
January 2025
James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
The time-resolved detection of mid- to far-infrared electric fields absorbed and emitted by molecules is among the most sensitive spectroscopic approaches and has the potential to transform sensing in fields such as security screening, quality control, and medical diagnostics. However, the sensitivity of the standard detection approach, which relies on encoding the far-infrared electric field into amplitude modulation of a visible or near-infrared probe laser pulse, is limited by the shot noise of the latter. This constraint cannot be overcome without using a quantum resource.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!