Evolutionary history of the human multigene families reveals widespread gene duplications throughout the history of animals.

BMC Evol Biol

National Center for Bioinformatics, Programme of Comparative and Evolutionary Genomics, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.

Published: June 2019

Background: The hypothesis that vertebrates have experienced two ancient, whole genome duplications (WGDs) is of central interest to evolutionary biology and has been implicated in evolution of developmental complexity. Three-way and Four-way paralogy regions in human and other vertebrate genomes are considered as vital evidence to support this hypothesis. Alternatively, it has been proposed that such paralogy regions are created by small-scale duplications that occurred at different intervals over the evolution of life.

Results: To address this debate, the present study investigates the evolutionary history of multigene families with at least three-fold representation on human chromosomes 1, 2, 8 and 20. Phylogenetic analysis and the tree topology comparisons classified the members of 36 multigene families into four distinct co-duplicated groups. Gene families falling within the same co-duplicated group might have duplicated together, whereas genes belong to different co-duplicated groups might have distinct evolutionary origins.

Conclusion: Taken together with previous investigations, the current study yielded no proof in favor of WGDs hypothesis. Rather, it appears that the vertebrate genome evolved as a result of small-scale duplication events, that cover the entire span of the animals' history.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6585022PMC
http://dx.doi.org/10.1186/s12862-019-1441-0DOI Listing

Publication Analysis

Top Keywords

multigene families
12
evolutionary history
8
paralogy regions
8
co-duplicated groups
8
evolutionary
4
history human
4
human multigene
4
families
4
families reveals
4
reveals widespread
4

Similar Publications

Gut microbial metabolism of L-carnitine, which leads to the production of detrimental trimethylamine N-oxide (TMAO), offers a plausible link between red meat consumption and cardiovascular risks. Several microbial genes, including , the operon, and the recently identified gene cluster, have been implicated in the conversion of dietary L-carnitine into TMA(O). However, the key microbial genes and associated gut microbes involved in this pathway have not been fully explored.

View Article and Find Full Text PDF

Dioscorea alata, a key tuber crop for global food security, is threatened by anthracnose disease caused by Colletotrichum gloeosporioides. However, identification of functional resistance genes against C. gloeosporioides in D.

View Article and Find Full Text PDF

Background: Calcium-dependent protein kinases (CDPKs), play multiple roles in plant development, growth and response to bio- or abiotic stresses. Calmodulin-like domains typically contain four EF-hand motifs for Ca²⁺ binding. The CDPK gene family can be divided into four subgroups in Arabidopsis, and it has been identified in many plants, such as rice, tomato, but has not been investigated in alfalfa (Medicago sativa subsp.

View Article and Find Full Text PDF

Genome-wide analysis of the cotton COBRA-like gene family and functional characterization of GhCOBL22 in relation to drought tolerance.

BMC Plant Biol

December 2024

Xinjiang Key Laboratory of Special Species Conservation and Regulatory Biology, College of Life Science, Xinjiang Normal University, Urumqi, 830017, China.

Background: The COBRA-like (COBL) gene family is a crucial glycosylphosphatidylinositol (GPI)-anchored proteins that participate in various biological processes in plants by regulating the arrangement of cell wall microfibrils. While the functions of COBL genes have been analyzed in several plant species, their roles in cotton's response to abiotic stress remain unexplored.

Results: This study identified and characterized the COBL gene family in Gossypium hirsutum, revealing a total of 39 COBL family members classified into five subgroups.

View Article and Find Full Text PDF

Background: The three-amino-acid-loop-extension (TALE) superfamily genes are broadly present in plants and play important roles in plant growth, development, and abiotic stress responses. So far, the TALE family in B.napus have not been systematically studied, especially their potential roles in response to abiotic stress.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!