Suspensions of calcite in water are employed in many industrial fields such as paper filling, pharmaceutics or heritage conservation. Whereas organics are generally used to tune the rheological properties of the paste, we also expect simple ions to be able to control the suspension rheology via the interparticle forces. We have thus investigated the impact of calcium, sodium and hydroxide ions on the elasticity of a colloidal gel of nanocalcite. We confront our macroscopic measurements to DLVO interaction potentials, based on chemical speciation and measurements of the zeta potential. Upon addition of calcium hydroxide, we observe a minimum in shear modulus, correlated to a maximum in the DLVO energy barrier, due to two competing effects: Calcium adsorption onto calcite surface rises the zeta potential, while increasing salt concentration induces stronger electrostatic screening. We also demonstrate that the addition of sodium hydroxide completely screens the surface charge and leads to a more rigid paste. A second important result is that carbonation of the calcite suspensions by the atmospheric CO leads to a convergent high elasticity of the colloidal gels, whatever their initial value, also well rationalized by DLVO theory and resulting from a decrease in zeta potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2019.05.083 | DOI Listing |
AAPS PharmSciTech
January 2025
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
The transdermal route is one of the effective routes for delivering drugs. It also overcomes many limitations associated with oral delivery. One of the limitations of this route is the drug's poor skin permeability-stratum corneum, the skin's outermost layer that also acts as a barrier for the drug to penetrate.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering, Central South University, Changsha, 410075, China.
Using potentiometric testing, we investigated the zeta potential of shield muck curing materials' particle surfaces, varying the concentration of metal ion complex. We analyzed the microscopic characteristics of shield muck curing products by using the electron microscopy, revealing the impact of metal ion complex on curing. Results showed that the metal ion complex significantly reduces the surface zeta potential of shield muck and conventional curing materials, with cement showing the most substantial effect, followed by shield muck, calcium carbonate, and calcium sulfate.
View Article and Find Full Text PDFSci Rep
January 2025
Industrial Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan.
This study investigates a nanoparticle-based doxycycline (DOX) delivery system targeting cervical cancer cells via the CD44 receptor. Molecular docking revealed a strong binding affinity between hyaluronic acid (HA) and CD44 (binding energy: -7.2 kJ/mol).
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Food Science and Engineering, Northwest A&F University, 712100 Yangling, Shaanxi, China. Electronic address:
The potential health hazards of micro/nanoplastics in food have become a significant concern. This study developed a Polydopamine-modified sodium alginate hydrogel (PMSAH) for removing microplastics in daily drinking water. The hydrogel's performance, characteristics, and kinetics for microplastic removal were systematically evaluated.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200443, China. Electronic address:
Though warangalone has shown anticancer properties against breast cancer cells, its colloidal stability and therapeutic index ought to be improved using a potential strategy, especially via protein-based (nano)carriers. In this research, transferrin was used as a plasma protein for the development of the warangalone-transferrin NPs. To investigate the mechanism underlying the formation of this complex, the interaction between warangalone and transferrin, as well as transferrin NPs, was analyzed using spectroscopic methods.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!