Seasonal variation and spatial transport of polycyclic aromatic hydrocarbons in water of the subtropical Jiulong River watershed and estuary, Southeast China.

Chemosphere

State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China.

Published: November 2019

Riverine runoff is one of the most important pathways of pollutants entering the oceans. To study the seasonal variations, spatial transports, sources and mass fluxes of polycyclic aromatic hydrocarbons (PAHs) from the subtropical Jiulong River watershed to estuary, water samples were collected in wet and dry seasons. PAH concentrations showed significant temporal-spatial variations (ANOVA, p < 0.05). In the watershed, PAH concentrations in wet season (48.6 ± 18.2 ng L) were significantly lower than in dry season (90.3 ± 18.5 ng L). In contrast, estuarine PAH concentrations in wet season (67.1 ± 24.6 ng L) were significantly higher than in dry season (27.4 ± 10.6 ng L) (p < 0.0001). The spatial variations of PAH concentrations in wet and dry seasons reflected positive and restricted transport processes occurred in the river. These findings might be subjected to seasonal changes in precipitation, water discharge, hydrodynamic conditions, and human activities. The compositional patterns of PAHs illustrated that fluorene and phenanthrene were the dominant compounds in the watershed, while phenanthrene was predominant in the estuary. Source analysis by molecular diagnostic ratios and PMF model indicated that fossil fuel and biomass combustion and petroleum both contributed to the presence of PAHs, and the high contributions of pyrogenic PAHs might be related to urban rainstorm runoff in winter and atmospheric inputs in winter. Although the estimated flux of PAHs from watershed to estuary was about 676 kg yr with a low level by comparing the data obtained in the worldwide, continue concern of PAHs in the Jiulong River is recommended due to the intense human activities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.06.067DOI Listing

Publication Analysis

Top Keywords

polycyclic aromatic
8
aromatic hydrocarbons
8
subtropical jiulong
8
jiulong river
8
river watershed
8
watershed estuary
8
seasonal variation
4
variation spatial
4
spatial transport
4
transport polycyclic
4

Similar Publications

'Neither here nor there'? Meiofauna as an effective tool to evaluate the impacts of the 2019 mysterious oil spill in a Northeast Brazil coral reef.

Mar Pollut Bull

January 2025

Universidade Federal de Pernambuco, Programa de Pós-Graduação em Biologia Animal, Center for Biosciences, Av. Prof. Morais Rêgo s/n, Recife, Pernambuco 50670-420, Brazil; Universidade Federal de Pernambuco, Department of Zoology, Center for Biosciences, Av. Prof. Morais Rêgo s/n, Recife, Pernambuco 50670-420, Brazil. Electronic address:

During the last half of 2019, the Northeast coast of Brazil suffered from an extensive oil spill of unknown origin, and marine organisms in those areas were subjected to significant impacts. In situations like this, the contaminant effects can persist for varying periods. Oil contaminants, such as polycyclic aromatic hydrocarbons (PAHs), generally reduce taxa's abundance and diversity in benthic communities in areas with greater exposure to chemical components.

View Article and Find Full Text PDF

Potential emission risks of organic compounds from cement kilns.

J Hazard Mater

January 2025

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Jianghan University, Wuhan 430056, China.

The extensive application of cement kiln industry results in substantial stack gas emissions, posing a potential risk of discharging organic pollutants. Cement industry is not considered as a primary contributor to persistent organic pollutants like polychlorinated dibenzo-p-dioxins and furans (PCDD/Fs), owing to its extremely low emission factor. However, knowledge on the previously unrecognized chemicals that may possess higher emission factors from cement industry is lacking.

View Article and Find Full Text PDF

Current level, sources, and risk of human exposure to PAHs, PBDEs and PCBs in South American outdoor air: A critical review.

Environ Res

January 2025

Institute of Science and Technology, São Paulo State University (UNESP), Av. Três de Março, 511, Alto da Boa Vista, 18087-180 Sorocaba, SP, Brazil. Electronic address:

This study provides comprehensive overview of the current level, sources and human exposure risk to hazardous polycyclic aromatic hydrocarbons (PAHs), polybrominated diphenyl ethers (PBDEs), and polychlorinated biphenyls (PCBs) in South American outdoor air. Research documents were obtainable for only 6 countries within the target period (2014 - 2024). For all contaminants, urban concentrations exceeded that of rural/remote locations.

View Article and Find Full Text PDF

Airborne particulate matter inhalation bioaccessibility: A review of methodological aspects.

Chem Biol Interact

January 2025

Department of Environment and Planning, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal. Electronic address:

Research has consistently linked exposure to particulate matter (PM) with adverse health outcomes, including cardiovascular and pulmonary morbidity and mortality. Understanding the mechanisms by which PM leads to these effects on human health is crucial for developing effective mitigation strategies. One aspect of PM research that has gained increased attention in the past few years is the bioaccessibility of inhaled PM-bound pollutants that have potential to cause adverse health effects.

View Article and Find Full Text PDF

Polycyclic Aromatic Hydrocarbons (PAHs) and Polychlorinated Biphenyls (PCBs) are recalcitrant organic pollutants often detected in stormwater. Various stormwater control measures (SCMs) can remove PAHs and PCBs by filtration, adsorption, and biodegradation. However, dissolved PAHs and PCBs remain present in the treated outflow of SCMs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!