The human pathogen Staphylococcus aureus is a gram-positive bacterium that causes difficult-to-treat infections. One of the reasons why S. aureus is such as successful pathogen is due to the cell-to-cell physiological variability that exists within microbial communities. Many laboratories around the world study the genetic mechanisms involved in S. aureus cell heterogeneity to better understand infection mechanism of this bacterium. It was recently shown that the Agr quorum-sensing system, which antagonistically regulates biofilm-associated or acute bacteremia infections, is expressed in a subpopulation of specialized cells. In this review, we discuss the different genetic mechanism for bacterial cell differentiation and the physiological properties of the distinct cell types that are already described in S. aureus communities, as well as the role that these cell types play during an infection process.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2019.06.011 | DOI Listing |
Cancer Rep (Hoboken)
January 2025
Golestan Research Center of Gastroenterology and Hepatology, Golestan University of Medical Sciences, Gorgan, Iran.
Background: Recently, microRNAs (miRNAs) have been applied as biomarkers for diffuse large B-cell lymphoma (DLBCL) patients. Early diagnosis and management of DLBCL can improve patient survival and prognosis.
Aims: This systematic review and meta-analysis aimed to evaluate the diagnostic and prognostic accuracy of miRNA biomarkers in DLBCL patients.
PLoS One
January 2025
Department of Medical Sciences, Uppsala University, Uppsala, Sweden.
Single-cell RNA sequencing (scRNA-seq) is a valuable tool for investigating cellular heterogeneity in diseases such as equine asthma (EA). This study evaluates the HIVE™ scRNA-seq method, a pico-well-based technology, for processing bronchoalveolar lavage (BAL) cells from horses with EA. The HIVE method offers practical advantages, including compatibility with both field and clinical settings, as well as a gentle workflow suited for handling sensitive cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Yusuf Hamied Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge CB2 1EW, United Kingdom.
The onset and development of Alzheimer's disease is linked to the accumulation of pathological aggregates formed from the normally monomeric amyloid-β peptide within the central nervous system. These Aβ aggregates are increasingly successfully targeted with clinical therapies at later stages of the disease, but the fundamental molecular steps in early stage disease that trigger the initial nucleation event leading to the conversion of monomeric Aβ peptide into pathological aggregates remain unknown. Here, we show that the Aβ peptide can form biomolecular condensates on lipid bilayers both in molecular assays and in living cells.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou 311113, China.
Joining heterogeneous materials in engineered structures remains a significant challenge due to stress concentration at interfaces, which often leads to unexpected failures. Investigating the complex, multiscale-graded structures found in animal tissue provides valuable insights that can help address this challenge. The human meniscus root-bone interface is an exemplary model, renowned for its exceptional fatigue resistance, toughness, and interfacial adhesion properties throughout its lifespan.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
The First Hospital of China Medical University, Liaoning, 110001, China.
Glioblastoma multiforme (GBM) is a highly aggressive and malignant brain tumor originating from glial cells, characterized by high recurrence rates and poor patient prognosis. The heterogeneity and complex biology of GBM, coupled with the protective nature of the blood-brain barrier (BBB), significantly limit the efficacy of traditional therapies. The rapid development of nanoenzyme technology presents a promising therapeutic paradigm for the rational and targeted treatment of GBM.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!