Carbon-based archiving: current progress and future prospects of DNA-based data storage.

Gigascience

Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen Engineering Laboratory for Innovative Molecular Diagnostics, Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518083, China.

Published: June 2019

The information explosion has led to a rapid increase in the amount of data requiring physical storage. However, in the near future, existing storage methods (i.e., magnetic and optical media) will be insufficient to store these exponentially growing data. Therefore, data scientists are continually looking for better, more stable, and space-efficient alternatives to store these huge datasets. Because of its unique biological properties, highly condensed DNA has great potential to become a storage material for the future. Indeed, DNA-based data storage has recently emerged as a promising approach for long-term digital information storage. This review summarizes state-of-the-art methods, including digital-to-DNA coding schemes and the media types used in DNA-based data storage, and provides an overview of recent progress achieved in this field and its exciting future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6586197PMC
http://dx.doi.org/10.1093/gigascience/giz075DOI Listing

Publication Analysis

Top Keywords

dna-based data
12
data storage
12
storage
7
data
6
carbon-based archiving
4
archiving current
4
current progress
4
future
4
progress future
4
future prospects
4

Similar Publications

Background/objectives: Modern sequencing technologies have transformed the identification of medicinal plant species and varieties, overcoming the limitations of traditional morphological and chemical approaches. This review explores the key DNA-based techniques, including molecular markers, DNA barcoding, and high-throughput sequencing, and their contributions to enhancing the accuracy and reliability of plant identification. Additionally, the integration of multi-omics approaches is examined to provide a comprehensive understanding of medicinal plant identity.

View Article and Find Full Text PDF

Objective: We assessed the impact of a food-provisioning intervention on diet quality in children with obesity.

Methods: Participants (n = 33, aged 6-11 years) were randomly assigned to either usual care (intensive health behavior and lifestyle treatment) or intervention (usual care + food provisioning; high-fiber, low-dairy diet) for 4 weeks. The primary outcome was a change in child diet quality at Week 4.

View Article and Find Full Text PDF

Identifying sex from an unknown dried blood spot (DBS), especially when the corpse remains undiscovered, often provides valuable evidence in forensic casework. While DNA-based sex determination is a reliable method in forensic settings, it requires expensive reagents and is time-consuming. To develop a rapid reagent-free blood test for sex, we employed paper spray ionization mass spectrometry (PSI-MS) to capture sex-discriminatory lipid profiles from 200 DBS samples comprising 100 males and 100 females.

View Article and Find Full Text PDF

Background: Food safety is a significant global study subject that is strongly intertwined with human life and well-being. The utilization of DNA-based methods for species identification is a valuable instrument in the field of food inspection and regulation. It is particularly significant for traceability purposes, as it enables the monitoring of a specific item at every level of the food chain regulation.

View Article and Find Full Text PDF

Enzymes as green and sustainable tools for DNA data storage.

Chem Commun (Camb)

January 2025

Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.

DNA is considered as an ideal supramolecular material for information storage with high storage density and long-term stability. Enzymes, as green and sustainable tools, offer several unique advantages for DNA-based information storage. These advantages include low cost and reduced generation of hazardous wastes during DNA synthesis, as well as the improvements in data reading speed and data recovery accuracy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!