A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Disparities in Short-Term Depression Among Prefrontal Cortex Synapses Sustain Persistent Activity in a Balanced Network. | LitMetric

Persistent activity of cue-representing neurons in the prefrontal cortex (PFC) is regarded as a neural basis for working memory. The contribution of short-term synaptic plasticity (STP) at different types of synapses comprising the cortical network to persistent activity, however, remains unclear. Characterizing STP at synapses of the rat PFC layer 5 network, we found that PFC synapses exhibit distinct STP patterns according to presynaptic and postsynaptic identities. Excitatory postsynaptic currents (EPSCs) from corticopontine (Cpn) neurons were well sustained throughout continued activity, with stronger depression at synapses onto fast-spiking interneurons than those onto pyramidal cells. Inhibitory postsynaptic currents (IPSCs) were sustained at a weaker level compared with EPSC from Cpn synapses. Computational modeling of a balanced network incorporating empirically observed STP revealed that little depression at recurrent excitatory synapses, combined with stronger depression at other synapses, could provide the PFC with a unique synaptic mechanism for the generation and maintenance of persistent activity.

Download full-text PDF

Source
http://dx.doi.org/10.1093/cercor/bhz076DOI Listing

Publication Analysis

Top Keywords

persistent activity
16
prefrontal cortex
8
synapses
8
balanced network
8
network persistent
8
postsynaptic currents
8
stronger depression
8
depression synapses
8
activity
5
disparities short-term
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!