Background And Aims: Most crucifer species (Brassicaceae) have small nuclear genomes (mean 1C-value 617 Mb). The species with the largest genomes occur within the monophyletic Hesperis clade (Mandáková et al., Plant Physiology174: 2062-2071; also known as Clade E or Lineage III). Whereas most chromosome numbers in the clade are 6 or 7, monoploid genome sizes vary 16-fold (256-4264 Mb). To get an insight into genome size evolution in the Hesperis clade (~350 species in ~48 genera), we aimed to identify, quantify and localize in situ the repeats from which these genomes are built. We analysed nuclear repeatomes in seven species, covering the phylogenetic and genome size breadth of the clade, by low-pass whole-genome sequencing.
Methods: Genome size was estimated by flow cytometry. Genomic DNA was sequenced on an Illumina sequencer and DNA repeats were identified and quantified using RepeatExplorer; the most abundant repeats were localized on chromosomes by fluorescence in situ hybridization. To evaluate the feasibility of bacterial artificial chromosome (BAC)-based comparative chromosome painting in Hesperis-clade species, BACs of arabidopsis were used as painting probes.
Key Results: Most biennial and perennial species of the Hesperis clade possess unusually large nuclear genomes due to the proliferation of long terminal repeat retrotransposons. The prevalent genome expansion was rarely, but repeatedly, counteracted by purging of transposable elements in ephemeral and annual species.
Conclusions: The most common ancestor of the Hesperis clade has experienced genome upsizing due to transposable element amplification. Further genome size increases, dominating diversification of all Hesperis-clade tribes, contrast with the overall stability of chromosome numbers. In some subclades and species genome downsizing occurred, presumably as an adaptive transition to an annual life cycle. The amplification versus purging of transposable elements and tandem repeats impacted the chromosomal architecture of the Hesperis-clade species.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6676390 | PMC |
http://dx.doi.org/10.1093/aob/mcz036 | DOI Listing |
To investigate the genetic factors underlying marketed body size traits in Chinese local geese, we conducted a comprehensive study involving nine body size traits in 251 samples at 10 weeks of age from five local breeds: Taihu goose (TH), Sichuan goose (SC), Guangfeng goose (GF), Xupu goose (XP), and Youjiang goose (YJ). Genotyping data were obtained through whole-genome re-sequencing, followed by a genome-wide association analysis utilizing the fixed and random model circulating probability unification (FarmCPU) approach. Our findings revealed 88 significant SNPs associated with body size traits, with 16 SNPs surpassing the genome-wide significance threshold ( = 3.
View Article and Find Full Text PDFParasit Vectors
December 2024
Department of Tropical Diseases, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
Background: The frequent communication between African and Southeast Asian (SEA) countries has led to the risk of imported malaria cases in the China-Myanmar border (CMB) region. Therefore, tracing the origins of new malaria infections is important in the maintenance of malaria-free zones in this border region. A new genotyping tool based on a robust mitochondrial (mt) /apicoplast (apico) barcode was developed to estimate genetic diversity and infer the evolutionary history of Plasmodium falciparum across the major distribution ranges.
View Article and Find Full Text PDFMicroPubl Biol
December 2024
Biological Sciences, Bowling Green State University, Bowling Green, Ohio, United States.
We report the discovery and genome sequence of mycobacteriophage Eugenia, isolated from soil samples collected in Akron, OH. Eugenia is a double-stranded DNA virus with a genome size of 69,139 bp, featuring 104 predicted protein-encoding genes, with 32 of these genes assigned putative functions.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; CAU-SC Advanced Agricultural & Industrial institute, CAU-SCCD Advanced Agricultural & Industrial institute, China Agricultural University, Chengdu 611430, China. Electronic address:
Litter size in pigs is affected by factors such as ovulation number, embryonic survival, and uterine environment conditions. Endometrial epithelial and stromal cells represent the first site of contact between the embryo and sows; therefore, dynamic changes in the growth and development of these cells are among the major factors affecting the intrauterine environment and implantation. Bone morphogenetic protein receptor type-1B (BMPR1B) is a receptor of the bone morphogenetic protein (BMP) family that has been identified as a candidate gene for reproductive traits in pigs.
View Article and Find Full Text PDFVirus Res
December 2024
Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki 710-0046, Japan.
Transmission of plant viruses that replicate in the insect vector is known as persistent-propagative manner. However, it remains unclear whether such virus-vector relationships also occur between plant viruses and other biological vectors such as arthropod mites. In this study, we investigated the possible replication of orchid fleck virus (OFV), a segmented plant rhabdovirus, within its mite vector (Brevipalpus californicus s.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!