Background X-linked adrenal hypoplasia congenita (AHC), due to mutations in the nuclear receptor superfamily 0, group B, member 1 (NR0B1)/dosage-sensitive sex reversal, AHC, critical region on the X chromosome, gene 1 (DAX1) gene, usually presents with a salt-wasting adrenal crisis in infancy and hypogonadotropic hypogonadism (HH) in adolescents. Genetic reports in the literature from patients of diverse ethnicity are limited. We describe the atypical clinical characteristics and molecular genetic results in six Indian patients. Methods Both exons and flanking intronic sequences of the NR0B1 gene were amplified and sequenced in five patients. In the sixth patient, suspected to have a large deletion, multiplex ligation-dependent probe amplification (MLPA) and chromosomal microarray analysis were performed. Results Sequencing revealed three novel mutations: a nonsense mutation (c.776C > A), a deletion (c.298del), both causing loss of domains which are highly conserved among nuclear receptor families, and a missense mutation (c.1112T > C). In-silico analysis by structure-based protein modeling predicted a de-stabilizing effect of the novel missense mutation. Two previously reported mutations were seen in patients with atypical manifestations such as late-onset adrenal insufficiency and precocious puberty. One patient had a 7.15-Mb contiguous deletion involving the NR0B1, Duchenne muscular dystrophy (DMD), glycerol kinase (GK) and melanoma antigen, family B, 16 (MAGEB16) genes. Conclusions Our report emphasizes the wide clinical spectrum of AHC, including rare manifestations, and enumerates unique mutations in the NR0B1 gene.

Download full-text PDF

Source
http://dx.doi.org/10.1515/jpem-2018-0440DOI Listing

Publication Analysis

Top Keywords

novel mutations
8
adrenal insufficiency
8
nuclear receptor
8
nr0b1 gene
8
missense mutation
8
mutations spectrum
4
spectrum disease
4
nr0b1
4
disease nr0b1
4
nr0b1 dax1-related
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!