Computational models can help researchers to interpret data, understand biological functions, and make quantitative predictions. The Systems Biology Markup Language (SBML) is a file format for representing computational models in a declarative form that different software systems can exchange. SBML is oriented towards describing biological processes of the sort common in research on a number of topics, including metabolic pathways, cell signaling pathways, and many others. By supporting SBML as an input/output format, different tools can all operate on an identical representation of a model, removing opportunities for translation errors and assuring a common starting point for analyses and simulations. This document provides the specification for Release 2 of Version 2 of SBML Level 3 Core. The specification defines the data structures prescribed by SBML as well as their encoding in XML, the eXtensible Markup Language. Release 2 corrects some errors and clarifies some ambiguities discovered in Release 1. This specification also defines validation rules that determine the validity of an SBML document, and provides many examples of models in SBML form. Other materials and software are available from the SBML project website at http://sbml.org/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6798823PMC
http://dx.doi.org/10.1515/jib-2019-0021DOI Listing

Publication Analysis

Top Keywords

markup language
12
sbml
9
systems biology
8
biology markup
8
language sbml
8
computational models
8
specification defines
8
language
4
sbml language
4
specification
4

Similar Publications

Objectives: The College of American Pathologists (CAP) Cancer Protocols are developed to facilitate cancer synoptic reporting. CAP offers these Cancer Protocols in both free printable and commercially licensed electronic formats. Several academic institutions have also implemented these Cancer Protocols as web-based services.

View Article and Find Full Text PDF

Prediction of ketosis using radial basis function neural network in dairy cattle farming.

Prev Vet Med

December 2024

Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Science, University of Agriculture in Krakow, al. Mickiewicza 24/28, Krakow 30-059, Poland. Electronic address:

The purpose of the paper was to apply an Artificial Neural Networks with Radial Basis Function to develop an application model for diagnosing a subclinical ketosis type I and II in dairy cattle. While building the neural network model, applied methodology was compatible to the procedures used in Data Mining processes. The data set was created based on the composition of milk samples of 1520 Polish Holstein-Friesian cows.

View Article and Find Full Text PDF

Understanding root system architecture (RSA) is essential for improving crop resilience to climate change, yet assessing root systems of woody perennials under field conditions remains a challenge. This study introduces a pipeline that combines field excavation, in situ 3-dimensional digitization, and transformation of RSA data into an interoperable format to analyze and model the growth and water uptake of grapevine rootstock genotypes. Eight root systems of each of 3 grapevine rootstock genotypes ("101-14", "SO4", and "Richter 110") were excavated and digitized 3 and 6 months after planting.

View Article and Find Full Text PDF

Curating models from BioModels: Developing a workflow for creating OMEX files.

PLoS One

December 2024

Department of Bioengineering, University of Washington, Seattle, WA, United States of America.

The reproducibility of computational biology models can be greatly facilitated by widely adopted standards and public repositories. We examined 50 models from the BioModels Database and attempted to validate the original curation and correct some of them if necessary. For each model, we reproduced these published results using Tellurium.

View Article and Find Full Text PDF

Summary: We present py_cFBA, a Python-based toolbox for conditional flux balance analysis (cFBA). Our toolbox allows for an easy implementation of cFBA models using a well-documented and modular approach and supports the generation of Systems Biology Markup Language models. The toolbox is designed to be user-friendly, versatile, and freely available to non-commercial users, serving as a valuable resource for researchers predicting metabolic behaviour with resource allocation in dynamic-cyclic environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!