Objective: To investigate the applications of artificial intelligence (AI) in diagnosis, treatment and outcome predictionin urologic diseases and evaluate its advantages over traditional models and methods.
Materials And Methods: A literature search was performed after PROSPERO registration (CRD42018103701) and in compliance with Preferred Reported Items for Systematic Reviews and Meta-Analyses (PRISMA) methods. Articles between 1994 and 2018 using the search terms "urology", "artificial intelligence", "machine learning" were included and categorized by the application of AI in urology. Review articles, editorial comments, articles with no full-text access, and nonurologic studies were excluded.
Results: Initial search yielded 231 articles, but after excluding duplicates and following full-text review and examination of article references, only 111 articles were included in the final analysis. AI applications in urology include: utilizing radiomic imaging or ultrasonic echo data to improve or automate cancer detection or outcome prediction, utilizing digitized tissue specimen images to automate detection of cancer on pathology slides, and combining patient clinical data, biomarkers, or gene expression to assist disease diagnosis or outcome prediction. Some studies employed AI to plan brachytherapy and radiation treatments while others used video based or robotic automated performance metrics to objectively evaluate surgical skill. Compared to conventional statistical analysis, 71.8% of studies concluded that AI is superior in diagnosis and outcome prediction.
Conclusion: AI has been widely adopted in urology. Compared to conventional statistics AI approaches are more accurate in prediction and more explorative for analyzing large data cohorts. With an increasing library of patient data accessible to clinicians, AI may help facilitate evidence-based and individualized patient care.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/bju.14852 | DOI Listing |
Clin Chem Lab Med
January 2025
Section of Clinical Biochemistry, University of Verona, Verona, Italy.
J Med Internet Res
January 2025
Chronic Disease Epidemiology, Population and Public Health, Pennington Biomedical Research Center, Baton Rouge, LA, United States.
Background: Electronic health records (EHRs) facilitate the accessibility and sharing of patient data among various health care providers, contributing to more coordinated and efficient care.
Objective: This study aimed to summarize the evolution of secondary use of EHRs and their interoperability in medical research over the past 25 years.
Methods: We conducted an extensive literature search in the PubMed, Scopus, and Web of Science databases using the keywords Electronic health record and Electronic medical record in the title or abstract and Medical research in all fields from 2000 to 2024.
J Med Internet Res
January 2025
Institute for Entrepreneurship, Technology Management and Innovation (EnTechnon), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
Background: Digital health technology (DHT) has the potential to revolutionize the health care industry by reducing costs and improving the quality of care in a sector that faces significant challenges. However, the health care industry is complex, involving numerous stakeholders, and subject to extensive regulation. Within the European Union, medical device regulations impose stringent requirements on various ventures.
View Article and Find Full Text PDFJMIR Public Health Surveill
January 2025
Laboratoire AGEIS, Université Grenoble Alpes, La Tronche Cedex, France.
Background: Although agricultural health has gained importance, to date, much of the existing research relies on traditional epidemiological approaches that often face limitations related to sample size, geographic scope, temporal coverage, and the range of health events examined. To address these challenges, a complementary approach involves leveraging and reusing data beyond its original purpose. Administrative health databases (AHDs) are increasingly reused in population-based research and digital public health, especially for populations such as farmers, who face distinct environmental risks.
View Article and Find Full Text PDFJ Speech Lang Hear Res
January 2025
Department of Psychology, University of Western Ontario, London, Canada.
Purpose: Recent advances in artificial intelligence provide opportunities to capture and represent complex features of human language in a more automated manner, offering potential means of improving the efficiency of language assessment. This review article presents computerized approaches for the analysis of narrative language and identification of language disorders in children.
Method: We first describe the current barriers to clinicians' use of language sample analysis, narrative language sampling approaches, and the data processing stages that precede analysis.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!