Chagas disease and leishmaniasis are neglected tropical disorders caused by the protozoans and spp. Carbonic anhydrases (CAs, EC 4.2.1.1) from these protozoans (α-TcCA and β-LdcCA) have been validated as promising targets for chemotherapic interventions. Many anti-protozoan agents, such as nitroimidazoles, nifurtimox, and benznidazole possess a nitro aromatic group in their structure which is crucial for their activity. As a continuation of our previous work on -nitrosulfonamides as anti-protozoan agents, we investigated benzenesulfonamides bearing a nitro aromatic moiety against TcCA and LdcCA, observing selective inhibitions over human off-target CAs. Selected derivatives were assessed in different developmental stages of and spp. A lack of significant growth inhibition has been found, which has been connected to the low permeability of this class of derivatives through cell membranes. Further strategies necessarily need to be designed for targeting Chagas disease and leishmaniasis with nitro-containing CA inhibitors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6598531 | PMC |
http://dx.doi.org/10.1080/14756366.2019.1626375 | DOI Listing |
RSC Med Chem
December 2024
VNU University of Education, Vietnam National University, Hanoi 144 Xuan Thuy, Cau Giay Ha Noi Vietnam.
Some novel sulphonyl thiourea derivatives (7a-m) containing 4,6-diarylpyrimidine rings were designed and synthesized using a one-pot procedure. These compounds exhibited remarkable dual inhibitory activity against human carbonic anhydrase CA I, CA II, CA IX, and XII isoenzymes and some cancer cell lines. Among them, some thioureas had significantly more potent inhibitory activities in the order of 7l > 7c > 7f (against the CA I isoform), 7f > 7b > 7c (against the CA II isoform), 7c > 7g > 7a > 7b (against the CA IX isoform), and 7d > 7c > 7g > 7f (against the CA XII isoform).
View Article and Find Full Text PDFJ Med Chem
January 2025
Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
Carbonic anhydrases (CAs) IX and XII are crucial for the survival and metastasis of solid tumors under hypoxic conditions. We designed compounds -, integrating triazole and benzenesulfonamide scaffolds known for inhibiting tumor-associated CAs IX/XII. Initial synthesis included compounds -, followed by diversification with small hydrophobic groups (-) and hydrophilic heterocyclic secondary amines (-).
View Article and Find Full Text PDFJ Biochem Mol Toxicol
January 2025
Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Guwahati, India.
This study is focused on the design, synthesis, and evaluation of some sulfonamide derivatives for their inhibitory effects on human carbonic anhydrase (hCA) enzymes I, II, IX, and XII as well as for their antioxidant activity. The purity of the synthesized molecules was confirmed by the HPLC purity analysis and was found in the range of 93%-100%. The inhibition constant (K) against hCA I ranged from 0.
View Article and Find Full Text PDFACS Med Chem Lett
January 2025
NEUROFARBA Department, Section of Pharmaceutical Science, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Florence, Italy.
The tetrazole group is here proposed as a zinc-binding warhead for the inhibition of the metalloenzyme carbonic anhydrases. A set of synthesized derivatives incorporating the tetrazole moiety were evaluated as inhibitors against a panel of human isoforms, exhibiting values spanning between the submicromolar and low-to-medium micromolar ranges (0.62-19.
View Article and Find Full Text PDFChemMedChem
January 2025
Université de Montpellier, IBMM UMR 5247 - Pôle Chimie Balard Recherche, 1919 Route de Mende, 34293, Montpellier, FRANCE.
Tumor-associated human carbonic anhydrases (hCAs), particularly isoforms hCA IX and hCA XII, are overexpressed in hypoxic regions of solid tumors and play a crucial role in regulating pH homeostasis, promoting cancer cell survival and enhancing invasiveness. These enzymes have emerged as promising therapeutic targets in cancer treatment, including photothermal therapy (PTT). PTT is a minimally invasive technique that uses light-absorbing agents to convert near-infrared (NIR) light into heat, effectively inducing localized hyperthermia and promoting cancer cell apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!